5ale

ジェロー

DOCUMENT RESUME

AUTE：CR TITL \because

INS＂ITHMION BPONS AGTVCY

REPCRT ： O
PIJR EATE
GRAN＇T
NOTF
EDRS PRIC： DESCFIETORS

Fmporica，waltor
Stricture and Jevelomment of personal－inocial
Behaviors ir Preschool settinus．EFs Head start Longitulinal stury．
Eixcational Fosting Service，Princeton，N．J． office of chill Development（DHEN），Washinfton， D．C．
PQ－71－20
Nov 71
○：ミーは－825
2.23 n ．
$\mathrm{M}-50.65 \mathrm{HC}-59.87$
Elack Communitv；＊Classroon Observation Tectiniquers： ＊Coynitive Development；Cognitive Measurement： Correlation；Economically Disadvantaged；＊Mea surement． Techniques：Personal Growth；Sex Differences；＊Social Develomment：＊socioeconomic Infiuences Eipolar Scale；Project tead Start；Unipolar Scale

IDENTIEIERS
$A B S^{m}=R A C:$
As part of an onqoing longitudinal study of early cognitive，affective，and social develoment in economically disadvantzged chiliren，this investivation assessed the classroom behavior of 500 urban preschool chiliten from Portiart，oregon， S^{+}． Louis，Missouri，and Irenton，New Jersey．The majority were black and enrclled in Head Start．Primary aims were to find the structure of classroom jehavior，examine similarities and differences in structure among subgroups and test（mean）differences amona subgroups on measures of personal－social constructs．The instruments used in tine svstem of measurement were the Bipolar and Unipolar Scales and the Manuai of scale Definitions．Major topics reviewed in detail are： Yethod：Structural Analyses：Procedure；Structural Findings；Further Results of the Eall（1）X Spring Samples；Results of the Fall（1）X Fall（2）Sample；Construct Correlates of Masculine－Feminine and Dependent－Indepenlent；Components of fdult and Child orientation：and Conclusions．Fifty－three references are cited．Summarized in 29 tables is a breakdown of samples of construct－and component measures according to age，sex，and period of observation（Spring or pall）． Appendixes a through i inclure the rating forms used in the analysis and data gathered using the Bipolar and Inipolar Scales．
（Author／is）

STRUCTURL AND DEVELOPMENT OF PERSONAL-SOCJAL BIHAVJORS

IN PRESCIOOL SkTTINGS

Walter Emmerich

ETS Head Start Longitudinal Study

Report under Grant Number H 8256

Prepared for: Project itead Start
Office of Child Development U. S. Department of Health, Education, and Welfare

0
'BHE investration was part of a larger longitudinal otuay urns the
 Sevice, 1903 , $19(9,1970$). The writer wishes to express his arreciation to the statif of the larger study for their help in carrying out tins investigation.

I am deeply frateful to Gita Wilder for her thoughtfui and deaicater assistance in developing the rating instrument and procedures. Mrs. wiluer also trained the trainer-supervisors, and, with Patricia L. Casserly, monitored fieli oferations and supervised protocol editing.

Ihis study would not have been possible without the sustined eiturts and skills of fieid personnel. I wish to express my gratitude to oul trainer-supervisors, Geraldine Auel in Portland, Oregon, Marie iall and Arthur Littleton in St. Louis, Missouri, and waura Engler in Trenton, New Jersey.

Our special thanks go to the women in each site whose ratings constituted the data ror this study.

For their splendid cooperation, we wish to thank the preschooi teachine and administrative staffs of the following organizations: Archdiocce o: Portland, Berean Baptist Church, St. Philips Cooperative, St. Vincent DeFoul Society, and Westminster Presbyterian Church, all of Portland, Oreen: Archdiocesan Schcol System, Grace Hill Settlement nouse, nunan bevejoment Corporation, and project head Start, all of St. Louis, Miscouri; Carolry Gtokes Day Mursery, Mercer Street Friends Center, Our Lady os Line ityine Snepherd Cultural Center, and Trenton Board of Education, all oi Trentor, New Jersey.

A study of this scope creates special problems for data processing, and I wish to thank Richard J. Martz for solving them and carrying out this phase of the study.

I am indebted to Dorothy T. Thayer for ber statisticel advice and work.

Frank Capell's sustained interest and assistance greatly facilitated the structural analyses and preparation of this report.

Ihe writer wishes to express his special appreciation to Virginia C. Shipran for her counsel and support throughout the course of this study.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS i-ii
INTRODUCTION 1
METHOD $2-15$
Instrument 2
Measurement Procedure 4
Selection of Study Sites and Programs 6
Measurement Plan and Design 7
Samples 8
Data Collection Personnel. 12
Selection of Raters 12
Training 13
Implementation and Monitoring of Data Collection 14
Interrater Reliabilities 15
STRUCTURAL ANALYSES: PROCEDURE 16-24
Initial Analyses 16
Further Analyses 16
Derivation of Construct Measures 19
Analyses of Construct Measures 24
STRUCTURAL FINDINGS $24-40$
Circumplex Ordering 24
Cue Utilization 28
Third Dimension 28
Discussion 36
A Structural-Developmental Model 38
FURTHER RESULTS FOR THE FALL 1 X SPRING SAMPLE 40-56
Sex X Age X Period Interactions 43
Sex X Age Interaction. 43
Sex X Period Interaction 45
Age X Period Interaction 45
Age Main Effects 45
Period Main Effects 45
Sex Main Effects 48
Individual Stabilities Within Subgroups 49
Developmental Transformations 49
Theoretical Implications 55
RESULTS FOR THE FALL $\mathrm{X} \mathrm{FALL}_{2}$ SAMPLE. 56-63
Mean Differences 56
Stabilities and Predictabilities 60

TABLE OF CONTENTS (Cont'd)

Page
CONSTTUUCT CORRE'LATES OF MASCULINE~FEMININE
AND DEPENDENT - INDEPENDENT 63-69
Masculine-Feminine 64
Dependent-Independent 69
COMPONENTS OF ADULT AND CHILD ORIENTATION 69-84
Measures 69
Base Rate Frequencies 72
Locations of Components Within the Structure 72
Mean Differences Among Subgroups 78
Developmental Transformations 79
CONCLUSIONS $84-94$
Organization of the Personal-Social Domain 84
Structural-Developmental Model 86
Methodological Implications. 87
Implications for Educational Programs 88
System of Personal-Social. Measurement 90
Implications for Future Studies. 93
REFERENCES 95-100
APPENDICES 101-218
A. Rating Format. 101-105
B. Manual of Scale Definitions and Examples 106-138
C. Rater Recruitment Forms 139-142
D. Training and Procedure Manual. 143-154
E. Median Interrater Reliabilities for Sites and Observation Periods. 155-162
F. Intercorrelations Among 18 Construct Measures Within Sex-Age-Period (Fall X Spring) Subgroups. 163-171
G. Scale Correlations with the 18 Construct Measures Within Sex-Age-Period (Fall X Spring) Subgroups. 172-207
H. Adult and Child Component Correlations with the 18 Construct Measures Within Sex-Age~Period (Fall ${ }_{1} X$ Spring) Subgroups. 208~218

Introduction

This is part of an ongoing longitudinal study of early cognitive, affective, and social development in economically disadvantaged children (Educational Testing Service, 1968, 1969, 1970). The present investigation assessed the classroom behaviors of over 500 urban children, the majority of whom were black and enrolled in Head Start. Primary aims of the study were to find the structure of classroom behaviors (intercorrelation patterns), to examine similarities and differences in structure among certain subgroups, and to test (mean) differences among subgroups on measures of personal-social constructs.

Little was known about the organization and development of perscnalsocial behaviors in young disadvantaged children. Consequently, there was interest in the dimensionality of individual differences in this sample as compared to previous research on predominantly white middle class samples. A related question was whether the dimensionality of personal-social behaviors is subject to sex diffe.ences and/or developmental change within the preschool period. Attention also was given to evaluating mean differences due to sex of child, age of entry into a program, length of time in a program, and their interactions. In addition to extending our general understanding of personal-social development, it was hoped these findings would suggest possible ways that Head Start and related early "compensatory" educational programs might become more effective. Finally, it was expected that the findings on structure and mean differences among groups would provide an integrated network of partially validated personal-social constructs in the classroom setting, laying the foundation for future analyses of relationships between these constructs and antecedent, concurrent, and subsequent processes measured in the larger longitudinal study.

Method

Instrument

Following a taxonomic analysis of the personal-social domain (Emmerich, 1968b), a rating instrument applicable to preschool settings was developed and piloted under field conditions (Emmerich \& Wilder, 1969). The instrument consists of 21 Bipolar Scales, 127 Unipolar Scales, and a Manual of Unipolar Scale Definitions and Examples (Appendixes A and B). The Bipolar Scales assess broad personality dimensions described in the literature (Becker \& Krug, 1964; Bronson, 1966; Digman, 1965; Emmerich, 1968b; Kagan \& Moss, 1962; Schaefer, 1961; Schaefer \& Bayley, 1963; Walker, 1967), Despite some overlap in their meaning, this rather large number of general dimensions was included to help clarify the structure of the personal--social domain at its more abstract levels (Coan, 1964; Emmerich, 1968a,b). The Unipolar Scales assess more specific categories of behavior, including social motives (e.g., Aggression), coping mechanisms (e.g., Ignores Frustration), and activities or interests (e.g., Gross Motor Behavior). Some definitions included in the Manual were taken or modified from previous research, especially in the case of social motives (Beller, 1948, 1955; Emmerich, 1964, 1966, 1968b; Heathers, 1955; Maccoby \& Masters, 1970; Martin, 1964; Sears, Rau, \& Alpert, 1965).

Recent analyses of social motives reveal that behaviors often assumed to be componerts of constructs may in fact be uncorrelated or differently correlated depending upon such factors as sex and age (Emmerich, 1964, 1966, 1968a; Hartup, 1963; Maccoby \& Masters, 1970; Sears, Rau, \& Alpert, 1965). Therefore, certain components were included as separate scales in the present
instrument. Morecver, in line with recent theorizlng on the differentiation and development of child-adult and childmehild subsystems of behavior (e.g., Emmerich, Goldman, \& Shore, 1971; Maccoby \& Masters, 1970), identical behavioral contents (e.g., Seeking Physical Proximity) sometimes were included in two scales, one defined with an adult as the object (recipient) of the subject's behavior, and the other with a child as the social object.

Each Bipolar Scale contained seven points and called for a judgment on the relative strengths of the attributes defining each pole. Each Unipolar Scale called for an estimate of a behavior's t'requency of occurrence during a specified period of observation, based upon the following four-point scale: (0): totally absent; (1): occurred once; (2): occurred more then once, but not continuousiy; (3): continuous during the observation period.

There were important advantages to including both Bipolar and Unipolar Scales in the same system of measurement. This strategy provided empirical links between the more global dimensions of personality and specific behavioral cues. Bipolar Scales were not explicitly defined by the Manual, but judges were instructed to rate a given child on the Unipolar Scales imnediately prior to rating the child on the Bipolar Scales, and to use information contained in the Unipolar Ratings when making Bipolar judgments. Thus, correm lations between these two ty pes of scales indicate which behavioral cues (Unipolar Scale Definitions) were utilized by judges in arriving at each Bipolar Rating. Also, insofar as there emerged different patterns of Unipolar correlates among Bipolar Scales, variance shared by Bipolar Scales could not be attributed solely to a "halo" effect.

A thorough understanding of a developmental process requires temporal comparisons of means and correlational patterns (Emmerich, 1969a; Wohlwill,

Abstract

(iv). Whe present Unipolar Scales employea "quasi-sbsolute" ressurement, ressumea to be more sensitive to mean changes in development than relatiye Budgents on Bipolar Scales (F nerich, 1969a). However, it was be?ievea that sensitivity to mean shifts could be achieved even in the case of the Eipolar Scaies by encouraging judges to use their Unipolar Scaie Ratings on each subject as behavioral cues when forming judgments on the Eipolar Scales.

Measurement Procedure
The procedure for rating a child typicaliy was as follows. A pair of raters simultanecusly observed the target child continucusly for $25-30$ minutes during a "free play" period when adults in the classroom minimally structured the child's activities. Immediately after this observation period the two observers left the classroom, went to a relatively secluded location, ard independently rated the child on the complete set of Unipolar and Bipolar Scales. These rating protocols were preserved and used to estimate interrater reliabilities. After completing their independent ratirgs, the two raters discussed those scales on which their ratings disagreed, with the aim of arriving at a complete set of consensus ratings. The consensus ratings defined a "single observation" on the child, constituting the basic unit of measurement.

Deviations irom the above procedures were kept to a minimum, but excentions were inevitable in a field study of this size and complexity. The more important exceptions were as follows. (a) At times only one observer was present to observe and rate a child in a classroom at a designated time. (b) When a class program included relatively few or short
"free piay" periods, judges observed two subjects consecutively prior to recording ratings on either of them. (c) If a class program included no obvious "free play" periods, the least structured period in the program was accepted as a substitute. (d) Occasionally, when scheduling was exceptionally tight and could not be readjusted, observers were allowed to base their ratings on observation periods that were shorter than 25 minutes. In fact, the shortest observation period was 19 minutes and the modal length was 30 minutes.

The above procedure obviously represents only one of many potential ways of $\varepsilon p p l y i n g$ the instrument. From a theoretical standpoint, perhaps the most important requirement was to observe and rate the child at a time when he is relatively free of adult control and formal teaching; otherwise, ratings might reflect almost exclusively behaviors elicited by teacherspecific and/or rrogram-specific determinants. The present approach was not altogether free of such determinants, of course, nor was it intended to be, but several studies cited earlier indicated that "free play" school contexts do elicit reliable individual differences at this age.

Our greatest question was whether a single observation p:riod would suffice to sample behaviors measured by the scales. For some subjects it was possible to secure a second observation within the Fall as described later in detail. However, a minimum of three and perhaps more repetitions of the rating procedure probably would be required to achieve a total scale score having reasonably high individual stability over time. While the resources of the present study could not support such an effort, the unusually large number of subjects and measures from the present instrument partially compensated for more stable individual scale scores. For example, it was not necessary to achieve high individual
stability over time in order to compare subgroups with regard to their intersorrelation patterns or mean levels.

Since interjudge reliabilities typically are estimated from subsamples, perhaps the most unusual feature of the present measurement system was roliance upon sinultaneous paired observations throughout the study. This procedure was adopted for two major reasons. First, because the judgmental task was so complex, and because of the many ways that anticipated field conditions might attenuate reliabilities, it was concluded that almost any substudy designed to estimate interjudge reliabilities would have been unrepresentatjve in one or more important respects, thereby lackin clear generalizability to the full sample. Secondly, preliminary work (Emmerich \& Wilder, 1969) had suggested that (a) motivation to do the observationmating task well is enhanced when raters work in pairs, and (b) the process of arriving at consensus ratings provides continuous self-correcting feedback in the application of scale definitions.

Selection of Study Sites and Programs

The present sample overlaps considerably with that of the larger longitudinal study, described elsewhere in detail (Educational Testing Service, 1970). Major criteria for selecting sites were that they should be "poverty" areas in different regions of the continental United States. Selection criteria for subjects were that they should be living in areas served by year-long Head Start programs feeding into primary schools cooperating in the larger study, and should be eligible for first grade, on the basis of birthdate, in the fall of 1971. The large majority of children were from familie: in which the father (anj/or mother) held a blue collar job.

The present classroom ratings were collected in Portland, Oregon, St. Louis, Missouri, and Trenton, New Jersey during the 1969-70 academic year. An attempt was made to rate all children included in the larger longitudinal study who were enrolled in a preschool or dayncare center auring 1969-70. In addition, ratings were made on the other children in a classroom if 60% or more of the children in that classroom (80% in St. Louis) were included in the larger longitudinal study. The present sample included children eligible for first grade in the Fall of 1971 on the basis of age plus those children within one month of such eligibility.

Measurement Plan and Design

Originally it was planned to secure at least four sets of (consensus) ratings on each subject, distributed such that two would occur close togethe: (within two weeks) in the $\mathrm{Fall}\left(\mathrm{F}_{1}\right.$ and F_{2}), while two would occur close together in the Spring $\left(S_{1}\right.$ and $\left.S_{2}\right)$. It was also hoped that subjects could be observed relativel: early in the Fall and relatively late in the Spring, thereby maximizing the time interval between Fall and Spring ratings. An attempt was also made to observe children within roughly the same time period among the several sites, so that amount of time in program and site would not bo confounded. If these conditions had held, site differences could have been ignored for present purposes, $F_{1} X F_{2}$ and $S_{1} X S_{2}$ comparisons would have provided (lower-bound) individual stability estimates, and $F_{1}+F_{2} x S_{1}+S_{2}$ comparisons would have defined the "amount of time in program" variable an well as providing information on individual stability over a longer time span.

In fact, however, it was possible to collect two observations in the Fail only, and only in Portland and Trenton. Also, Fall observations

-8-

continued into the Winter, espezially in St. Louis where they did not commence until December, and Spring observations commenced in late Winter. Moreover, it was not always possible to rate the same children both in the Fall and Spring.
rihe original design was divided into two parts, with overlap of subjects between them. In the first design, subjects having both Fall ${ }_{1}$ and Spring ratings were selected from all three sites. These data were amenable to subgrouping on the basis of sex, age at entry into a program (Younger Vs. OLder), and semester (Fall ${ }_{l}$ Vs. Spring). In the second design, subjects having both a Fall ${ }_{1}$ and Fall_{2} observation in Portland and frenton were selected. In addition to providing Fall X Fall $_{2}$ lower-bound estimates of short-term stability, the Fall $\mathrm{X} \mathrm{Fall}_{2}$ data were amenable to subgroupings on the basis of sex, age at entry into a program, and period of observation during the Fall (Early Vs. Late).

Samples

The Fall 1 X Spring sample consisted of 596 children from all three sites, and the Fall ${ }_{1} X_{\text {Fall, }}^{2}$ sample included 415 children from Portland and Trenton only. Ir these overlapping samples children classified as "Younger" ranged In age from 47 to 55° months (Means $=51.9$ and 51.8 , respectively) at the time of the Fall, observation, and children classified as "Older" ranged in age from 56 to 64 months (Means $=58.6$ and 57.9 , respectively) at the time of the Fall_{1} observation.

The Fall ratings commenced in October 1969 , and continued through January 1970. Spring ratings commenced in late February 1970, and continued until
the middle of June 1970. The mean time interval between the Fall and Spring ratings for the Fall X Spring sample was 133 days (S.D. $=28$).

Table 1 presents a breakdown of the $\mathrm{Fall}_{1} X$ Spring sample according to sex and age at entry into the program (Younger Vs. Older). Entries ir this table represent cell sizes for subsequent correlational analyses and Analyses of Variance. Since this sample was constituted longitudinally to include subjects having both Fall_{1} and Spring ratings, corresponding cell sizes for the Fall and Spring periods are identical. Table 2 presents a breakdown of this sample according to site and race.

Table 3 presents a breakdown of the $\mathrm{Fall}_{1} \times \mathrm{Fall}_{2}$ sample becording to sex, age at entry into program, and period within the Fal? Bemester when the Fall $_{1}$ observation occurred (Early Vs. Late). An attempt was made to collect Fall l_{1} and Fall $_{2}$ ratings on the same children with no fewer than four and no more than 13 days apart. In fact, 94% of this sample was rated a second time within two weeks; the mean interval was 9.2 days (S.D. = 5.9). Classification according to period was determined from the number of days between September l, 1969 and the child's Fall_{1} rating. For the Early group, tinis interval ranged from 50 to 80 days, with a mean of 64 days (S.D. $=10$). For the Late group, this interval ranged from 83 to 151 days, with a mean of 113 dayis (S.D. $=22$). Again, entries in Table 3 represent cell sizes for subsequent correlational analyses and Analyses of Variance. (Disproportionate cells in Table 3 are due to the built-in association between period and child age.) Since all subjects in this sample were rated twice in the Fall, corresponding cells for the Fall_{1} and Fall_{2} ratings are identical. Table 4 presents a breakdown of this sample according to site and race.

Table 1
Fall X Spring Subsample Sizes

	Boys	Girls	Sexes Combined
Younger	169	150	319
Older	140	137	277
Ages Combined	309	287	596

Table 2
Fall X Spring Sample Classified by Site and Race

$=ב$	Black	White	Races Combined
Portland	212	67	279
St. Louis	131	54	185
Trenton	124	8	132
Sites Combined	467	129	596

Table 3
$\mathrm{Fall}_{1} \times \mathrm{Fall}_{2}$ Subsample Sizes

Table 4
$\mathrm{Fall}_{1} \mathrm{X} \mathrm{Fall}_{2}$ Sample Classified by Site and Race

	Black	White	Races Combined
Portland	211	63	274
Trenton	133	8	141
Sites Combined	344	71	415

Witi Collection Fersonnel

A trainer-supervisor of raters was hired for the academic year in each site on the basis oi the quality of her crevicu: supervisory work in the larger study or similar positions. This person worled under the supervision Of a local professional technical director for the larger study. Primary functions of trainernsupervisors were to become tnoroughly competent in using the instrunent, to train raters in local sites, to set up and manage local operations, to maintain quality control in data collection, and to keep close ifuison with the Princeton Office.

The actual reters were women from the iocal cities, often 3iving in the communities under study. While there were no minimal educationai requirements, the typical rater had completed hig!. school. Many had considerable experience with their own or other young children, had worked previously on other aspects of the larger study, and/or worked subsequently on other aspects of the larger study.

Selection of Reters

Raters were finct selected as trainees. At the completion of training, thone tramees meeting acceptable standards of performance were selected for the actual study. The first step was a brief interview to find out if the candidate would be available when needed throughout the academic year. Applicants also completed a paper-and-pencil instrument asking for examples of different kinds of behavior in children, such as Dependency and Aggression (Appendix ©). This instrument was used to screen out persons ckiously iacking verbal skills required for the rating task. Decisíns on hiring at both this and the second phase of selection were made by the
author in collaboration with the trainer-supervisor and profescional staff of the larger study. Applicants accepted at this first stage were informed that they must meet the professional staff's stanciards of performance by the end of the designated training period in order to be hired as raters.

Most of the trainees qualified as raters. Decisions were based upon the trainee's ability to rork well with others and to apply the instrument effectively. Competence at the rating task was judged in part by inspecting bivariate distributions of agreements across the 148 scales for paired independent raters on at least one and often more than one child. While i t would have been unrealistic to expect many raters to meet very nigh absolute standards of agreement, it was quite evident when a trainee was not likely to achieve even a moderately high agreement level.

Training

Trainer-supervisors participated in a two-week intensive training course in Princeton during September, 1969. They were thoroughly trained in use of the instrument in much the same way that they were later to train raters in the local sites. They were also instructed at this time on the measurement plan for the year and procedures for implementing this plan in the field. Details on these procedures are found in the Training and Procedure Manuai (Appendix D).

Rater training in local sites consisted of a minimum of eight full working days of intensive $t: a i n i n g$ in use of the instrument under field conditions. Training was conducted by the trainer-supervisor in collaboration with the local technical director and Princeton staff. Basic features of this trainirab,
detailed in the Γ reining and Procedure Manual, can be summarized as follows: (a) The trainer reviewed the Aanual of scale detinitions with the group of trainees, emphasizing concrete behavioral examples in young children. (b) I'rainees observed children under actual study conditions, took notes on their beharior, matched behaviors to scales, and discussed these matches in group disnussions with the trainer. (c) Raters paired off to observe and rate cinlaren, followed by corrective feedback from each other and the trainer.

Implementation and Monitoring of Data Collection

Local operations were supervised from a central office in each site where the supervisor maintained a master schedule for assigning raters to classrooms and subjects. Flexible scheduling was required to deal efficiently with day-to-day changes in field conditions, although no feature of scheduling is known to have introduced systenatic bias into the rating procedure.

The training process was continued throughout the course of the study. Whenever feasible, rater pairs held their last consensus discussion of the day at the central office where the trainer-supervisor was available to help resolve any questions that might arise. Such supervision from the trainer was mandatory at least once a week. Bivariate distributions of the paired independent ratings were continual $1 y$ monitored by local and Princeton staffs.

For estimating interjudge reliabilities, it was desirable that specific pairs simulcaneously and independently rate a reasonably large number of subjects. On the other hand, reassigamerits of certain pairs sometimes enhanced morale and quality of performance, and so pair reassignments were allowed whenever data quality was at issue.

When a subject was observed and rated a second time in the Fall, different pairs of raters were assigned to the Fall_{1} and Fall 2 ratings of that subject. Assignment of different raters to subjects seen both in the Fall and Spring was not attempted, and it seems doubtful that Spring ratings were influenced by recall of the same children in the Fall.

Interrater Reliabilities

Pearson correlations were computed on all scales for rater pairs who observed at least 20 children simultaneously within the same period (Fall or Spring). These interrater rcliability estimates are reported for each site and period in Appendix E. For the 21 Bipolar Scales as a set, the median of the medians across pairs, sites, and periods was .63. For tre 127 Unipolar Scales as a set, this overall median was .74.

While generally satisfactory for present purposes, reliability estimates sometimes varied considerably among pairs within sites, and differed somewhat among sites and between periods (see Appendix E). These variations in measurement accuracy may have actenuated the present findings, but it seams unlikely that they introduced systematic bias. Taking into account the careful attention given to training and to monitoring of data collection, it would appear unrealistic to expect dramatic improvements in the present instrument's overall accuracy when applied under conditions approacling the complexity of this study. In this regard, it remains an open question whether the paraprofessional raters generally were any less (or more) accurate than college or graduate students or other professional groups.

Structural Analyses: Procedure

Initial Analyses

The purpose of the structural analyses was to reduce the criginal set of 148 scales to a subset whicn was (a) representative of major dimensions underlyine the total set of scales, and (b) reasonably invariant in structure across subgroups: Once such a "continuous" structure had been isolated, we could proceed to examine the meanings of constructs withi: the overall structure, short- and long-term stabilities, and mean dif:erences among subgroups. Also, by comparing scales which were reasonably invariant in structure with those which were not, we hoped to be able to aiscern possible "discontinuities" in structural development (Emerich, 2968a).

Initial inspection of the intercorrelations for several Bipolar Scales in a subsample indicated an ordering resembling the well-inown circumplex nodel of personal-social behavior (Baumrind \& Black, 1967; Becker \& Krug, 1964; Foa, 1961; Lorr \& McNair, 1965; Schaefer, 1961; Schaefer \& Bayley, 1963). Application of the Guttman-Lingoes Smallest Space Aralysis (SSA) (Guttman, 1968; Lingoes, 1965; Roskam \& Lingoes, 1970) to the Fali, X Spring Sample confirmed the presence of a circumplex ordering of most Bipolar Scale. that was highly similar among the four sex-period groups (Boys-Fall, BoysSpring, Girls-Fall, Girls-Spring).

Further Analyses

In subsequent analyses, SSA programs were applied to the Fall, X Spring Sample to detect ordered patterns in larger correlation matrices which included bith the Eipolar and Unipolar Scales. These analyses helped determine which

Unipoliar Scales, if any, (a) were located on or near the circumplex, (b) were in a different location but on or close to the rough plane defined by the circumplex, or (c) defined a third dimension perpendicular to the circumplex plane. In effect, then, we were interested in the location of Unipolar Scales relative to the circumplex ordering within a tnree-space defined by the SSA. Of course, if in these larger matrices the circumplex ordering no longer held, this fact would be revealed by the SSA. Moreover, so that the final structural solution might be reasonably invariant across subgroups, each step in the analysis was carried out separately on the four sex-pericd subgroups.

Prior to these analyses, the following preliminary steps were taken. First, since Bipolar Scales were undefined in the Manual, it was important to know if the interpretation of these scales by raters differed among the sites. It was reasoned that a Bipolar Scale would have the same meaning across sites to the extent that its fattern of correlations with all other Bipolar Scales remained invariant across sites. Each Bipolar Scale's correlations wits the others were computed for each of the four sex-period subgroups within each of the three sites. Site variations were inspected and any striking changes in correlation pattern were noted. On this basis, Bipolar Scale No. 17 (Academically Motivated Vs. Otherwise Motivated) and No. 20 (Rigid Vs. Flexible) were eliminated. Secon $\mathrm{Hl}_{\mathrm{y}} \mathrm{y}$, because the Bipolar Scales provided a reasonably good match with the circumplex model, especially that of Becker and Krug (1964), certain scales were reflected (reversed) in order to provide a closer match with this model and to distribute Bipolar Scales more evenly around the circle. Third, since five of the Unipolar Scales (Nos. 38, 40,
 subfirus，these scaies were eliminated．Fourth，four unipolar Scales fios． \therefore ， 14 ，he，ill）were dropred because their convelations with no other scaie included in Arelysis Series B（see below）reacied at least $|.30|$ in at least une ct゙ the four sex－period subgroups．

Gere were several series of analyses，each consisting of SSA three－ space soiutions within each of the four sex－period subgroups．Ideally we wuld nave wansea to include all Bipolar and unipolar Scales in the first series，but the available SSA programs could not handle this number of variabies．Consequently，Series A and B were reeded to place aii Unipolar ここales into the sane space as the Bipolar Scales．Series A included the is Eipolar Scales plus the 59 Unipolar Scales which had at least one Pipolar Scale correlate $\geq|.30|$ ．Iwo important outcomes of Series A were that the circumplex drer was preserved and a third dimension emergea，although its meanine was not clear．Series B inciuded 19 Bipolar Scales， 20 Unipolar Seales that were extended out on the third vector most consistentiy in Series f，and the remaining 59 Unipolar Scales excluded from Series A ．The outcome of Series E was essentially the same as Series A．Series C and D reduced the number of scales without essertially altering the structure．Series C included 18 Bipolar Scales（ivo．2，Masculine－Feminine，was excluded）plus It Unipolar Scales consistently extended out on the third vector in Series A and b．Series 0 included 18 Bipolar Scales plus 17 Unipolar Scales consistently extended out on the third vector in Series C ．

The above analyses provided reasonably clear answers to several important stractural questions．Firet，the initial circumplex proved to be very robust
despite the addition of Unipolar Scales. Secondly, while not rigorously tested, the ancilyses gave little reason to doubt that three SSA dimensions accounted for the major orderings of scale intercorrelations. Finally, reasonably similar structures emerged across the four sexmperiod groups.

berivation of Construct Measures

The next step was to derive construct measures, and, in the process, to clarify the thirà dimension's meaning, which had remained elusive throughout the above series of analyses. Our strategy was to derive measures ror several constructs which were located at different places on the third dimension, and then to interpret this dimension's meaning from a final series of $S S A$ analyses that included these derived scores.

Three pciarities appeared as possible definers of the third dimension at one or more points in Series A-D. The first contrasted Autonomous Achievement (Beller, 1948, 1955; Crandall, 1963; Emmerich, 1966; Martin, 1964) with the more directly "social" constructs on the circumplex. A composite score for Autonomous Achievement was derived by summing the seven appropriate Unipolar Scales listed in Table 5. Alsc, a (positive) social orientation toward adults seemed to characterize one pole, while such an orientation toward children seemed to characterize the other pole (Heathers, 1955; Maccoby \& Masters, 1970; Marshall \& McCandless, 1957; McCandless, Bilous, \& Bennett, 1961; Moore \& Updegraff, 1964). A composite score for Adult Orientation was derived from the sum of 14 Unipolar Scales which specify that an adult is the recipient of the sub.ject's behavior (Table 5). A composite score for Child Orientation was derived from the sum of 14 Unipolar Brales specifying another child as the social object (Table 5). Since these
two constructs ineluded corresponding scales having identical contents (e.g., Hos. 1 and 2), they differed only with regard to social object. Finally, there was a contrast between gross motor and fantasy ("make believe") activities on the one nand, and activities involving fine manipulative, cognitive, or artistic behaviors on the other. These five distinct activity scaier whe kept intact (Table 5).

In order to further reduce the number of scales while achieving as close a match as poszible with the 10 -segment circumplex model of Becker and Krug (1964), certain Bipolar Scaies were dropped (Nos. 9, 10, 14, 19) and others were summed to form composite measures ('able 5). The resulting 10 measures differed from the Becker and Krug model in two essential ways: (1) two aspects of the segment titled "Cooperative" were distinguished, the first emphasizing interpersonal behaviors, the second more impersonal behaviors; (2) the present Bipolar Scales aid not adequately sample the "Emotional-Demanding" segment of the Becker and Krug model.

In summary, then, 40 Unipol?r Scales were reduced to eight construct measures, each of which was of interest in its own right as well as being distributed along the third dimension. These measures, together with the 10 for the circumplex constructs, constituted the fully reduced set of 18 measures used in the final series of structural analyses that follows, as well as in later tests of mean differences among subgroups. In addition to listing the component scales for these measures, Table 5 provides median interrater reliabilities taken from Appendix E.

Table 5
Construct Measures Defining the Three-Space Structure

Table 5 (Cont' a)

Construct Title \quad Component Scale $(s)^{b} \quad$| Median Interrater |
| :---: |
| Reliailily |

11. Adult

Urientation.
12. Child

Orientation

Ariviyses of Construct, Messures

The rour sex-period subgrouns wers further subdivided according to the child's age at entry into the preschool program (Younger Vs. Older), thus creating eight sex-age-perind subgroups. (I'his subivision resulted in zero variability in one or more subgroups for Unipolar Scales 21, 34, 36, 67, ií, ana 1l<i.) In the final series of analyses, for which outcomes are reported below, the 18 construct measures were subjected to SSA within each of the eieht subgroups.

One feature of the Smallest Space Analysis is that outcomes may be seen fuite directly simply by rearranging portions of the original correlation matrix. In the spirit of "staying close to the data," actual SSA outputs will not be reported here; rather, relevant portions of the original correlation matrices will be presented.

Structural Findings

Intercorrelations among the 18 construct measures within each of the eight subgroups are given in Appendix F and are summarized in Tables 6-8, which present different sections of the matrix of mean correlations across the eight subgroups. Also noted in these tables are the number of surgroups in which a given correlation was statistically significant.

Circumplex Ordering

The circumplex ordering of the 10 Bipolar Scale constructs is readily seen in Table 6. (The locations of all other scales on the circumplex can be determined from inspection of Appendix G.)

Table 6

Mean Subgroup Intercorrelations for Circumplex
Ordered Construct Measures

[^0]Table '7

Mean Subgroup Intercorrelations on Task Vs.
Person Orientation Measures

${ }^{*} \underline{p}<.001$ (two-tailed) in at least four out of eight subgroups.
${ }^{* *} \underline{p}<.001$ (two-tailed) in at least seven out of eight subgroups.
-27-
Table 8

Mean Subgroup Correlations Between the Circumplex and

Task Versus Person Orientation Measures

Task Orientation	No.	Circumplex									
			$\begin{array}{r} 80 \\ \frac{5}{4} \\ 0 \\ 2 \\ \hline \end{array}$								
Adult Orientation	11	. 11	. 18	. 07	. 06	. 08	-.11	-. 21	. 0_{4}	-. 07	. 19
Autonomous Achievement	13	. 0	. 17	. $35^{* *}$. 36	. 03	-. 09	-. 18	-. 10	-. 14	. 20
Cognitive Activity	14	. 00	. 09	. 07	. 13	. 05	-. 12	-. 08	. 05	-. 05	. 09
Fine Manipulative Act.	15	-. 12	. 0	. 10	. 27	. 07	. 02	-. 01	. 05	-. 08	-. 01
Artistic Activity	16	. 02	. 05	. 10	. 13	. 01	-. 06	-. 07	-. 04	. 00	. 10
Person Oriertation											
Child Orientation	12	. 51	. $39^{* *}$. 19	. 05			-. $42^{* *}$	-. 19	-. 17	. 31^{*}
Gruss Motor Behavior	17	$.31^{*}$. 21 *	. 09	-. 15	-. 09	-. 14	-. 28 *	-. 14	. 05	. 23
Fantasy Activity	18	. 28^{*}	. 23 *	. 15	-. 03	-. 08	-. 22	$-.33^{*}$	-. 10	. 01	. 25

${ }^{*} \mathrm{p}<.001$ (two-tailed) in at least four out of eight subgroups.
${ }^{*}{ }_{\mathrm{p}}^{\mathrm{p}}<.001$ (two-tailed) in at least seven out of eight subgroups.

Cue Utilization

The pattern of Unipolar Scale correlates for each Bipolar Scale indicates how specific behavioral cues were utilized by raters in arriving at Bipolar Scale judgments. Since Bipolar Scales were applied in defining the circumplex, these cue patterns are useful for identifying constituent behaviors underlying the 10 circumplex constructs. For illustrative purposes two adjacent constructs on the circumplex, Sociable and Loving, are compared in Table 9. The two sets of cues overlapped considerably, as expected from the close proximity of Sociable and Loving in the structure. On the otiner hand the rank orderings of critical cues differed, indicating underlying distinctiveness of meaning. Thus, the circumplex ordering of constructs cannot be attributed primarily to "halo" effects; i.e., to associational processes in raters which merely link one global trait to another. Moreover, these findings suggest that requiring raters to go through the process of first judging construct-related behavioral cues is an important if not critical step in arriving at highly usefui global ratings of the type embodied in the present Bipolar Scales.

Third Dimension

As seen in Table 7, there were two major clusters of measures on the third dimension, the first consisting of Adult Orientation, Autonomous Achievement, Cognitive Activity, Fine Manipulative Activity, and Artistic Activity. The second cluster consisted of Child Orientation, Gross Motor Behavior, and Fantasy Activity.

With regard to the meaning of this polarity, it will be noted, first of all, that the second cluster was more "saturated" with social content than the first. To illustrate, when engaging in Cognitive or Fine Manipulative Activity,

Table 9
Unipolar Correlates of Sociable and Loving,
Averaged Across Subgroups

No.	Unipolar Scale	Sociable		Loving	
		\bar{r}	Pank	\bar{r}	Pank
43	Friendly toward other child	.53	1	. 40	3
85	Attempts to communicate verbally to other child	. 50	2	.36	4
50	Smiles and/or laughs	.42	3	.46	1
31	Engages in complementary behavior	. 39	4	. 28	6
88	Verbally loud	.37	5	. 29	5
8	Seeks attention from child positive bid	.36	6	. 27	7
46	Exhibits leadership	.30	7	.24	8
62	Gets intrinsic satisfaction from activity or task	. 28	8	. 43	2

Note:--Listed are Unipolar Scale correlates having a mean correlation across subgroups $\geq 1.30 \mid$ with either construct.
the child typically will direct his attention to the task itself, thus at least temporarily removing himself from social stimulation, whereas for Gross Motor or Fantasy Activity, two or more children are more likely to engage jointly in a common activity accompanied by social interaction. As seen in Table 8 , the second cluster measures were located close to Sociable on the circumplex, whereas measures from the first cluster tended to be more "distant" from the circumplex. Of the 400 correlations between the 10 circumplex measures and the five Task Orientation measures in all eight subgroups, only 27 or 7% were statistically significant ($\mathrm{p}<.001$, two.mtailed). On the other hand, of the 240 correlations between the 10 circumplex measures and the three Person Orientation measures, 70 or 29% met this significance criterion.

Of course, children high on the first cluster measures also interacted socially, but the topography of their social behaviors appeared to be quite different. Such children were more likely to be located nearer the Cooperative sectors of the circumplex (Table 8), and to interact with adults rather than with peers (Table 7).

This contrast between the two clusters is well illustrated by another kind of comparison. The Unipolar Scale of Engages in Parallel Activity (U.P. 32), having an average interrater reliability index of .67 (Appendix E), was defined as follows: "Child engages in same activity as other who is nearby, but (their) activity is independent, with no mutual coordination" (Appendix B). The Unipolar Scale of Engages in Complementary Behavior (U.P. 31), having an average interrater reliability index of .77 (Appendix E), was defined as follows: "Child coordinates his own activity to supplement and facilitate a common activity shared by one or more others. Genuinely
cocperative activity" (Appendix B). The difference between these two scale definitions is essentially the same as that noted above with regard to the two clusters on the third dimension. Table 10 presents correlations of the two scales with each of the 18 construct measures, averaged across subgroups. The expected differential patterning of correlates was strikingly clear. Engages in Parallel Activity was positively associated with the first cluster, unassociated with the second cluster, and minimally associated with the circumplex, whereas Engages in Complementary Behavior was unassociated with the first cluster, positively associated with the second cluster, and located near Sociable on the circumplex.

These findings together with the fact that Adult and Child Orientation constructs were orthogonal suggest that the topography of adult-oriented behaviors will include more task-related communications than that for childoriented behavior. It will be recalled that Adult and Child Orientation measures were derived from identical Unipolar Scales differing only in social object (Table 5). However, the relative contributions of corresponding scales to each total score could still differ, as revealed from part-whole correlations. Table 11 presents the part-whole correlations and their rank orders for the derived Adult and Child Orientation measures, averaged aeross the eight subgroups.

The same scales of Attempts to Communicate Verbally, Seeks Attention Through Positive Bid, and Friendly, received the top three ranks within both constructs, signifying a common core of sociality underlying both Adult and Child Orientation. However, if one considers in Table ll those component scales which shifted three or more ranks, then differences in topography

Table 10

Mean Construct Correlations Across Subgroups for
Engages in Parallel Activity and
Engages in Complementary Behavior

Construct	No.	Parallel Activity (U.P.32)	Complementary Behavior (U.P.31)
Sociable	1	.03	$.39^{* *}$
Loving	2	.06	$.28^{*}$
Cooperative-Interpersonal	3	.10	$.19^{*}$
Cooperative-Impersonal	4	.20	-.01
Compliant	5	.03	.06
Submissive	6	.03	-.13
Witharawn	7	-.06	$-.35^{* *}$
Distrusting	8	-.05	-.19
Defiant-Hostile	9	-.07	-.04
Assertive	10	.09	.20
Adult Orientation	11	.21	-.07
Autonomous Achievement	13	$.34 * *$.01
Cognitive Activity	14	.18	-.02
Fine Manipulative Activity	.5	$.33^{*}$	-.15
Artistic Activity	16	$.25^{*}$	-.16
Child Orientation	12	.05	$.40^{* *}$
Gross Motor Activity	17	-.04	$.29^{*}$
Fantasy Activity	18	-.12	$.40^{* *}$

[^1]Table 11

Mean Part-Whole Correlations Across Subgroups for Adult and Child Orientation Measures

Unipolar Scale			Adult Orientation $\bar{r} \quad$ Rank		Child Orientation $\bar{r} \quad$ Rank	
Attempts to Communicate Verbally		85	.75	1	. 58	3
Seeks Attention - Positive Bid	7	8	. 73	2	.63	2
Friendly	42	43	. 72	3	.65	1
Seeks Information	77	78	. 54	4	.46	7
Responsive to Teaching	79	80	.49	5.5	. 23	11.5
Seeks Help or Guidance	3	4	.49	5.5	. 28	10
Conforms to Routine-Request		28	.46	7.5	. 53	5
Seeks Physical Proximity	5	6	. 45	7.5	.54	4
Seeks Attention - Weak Bid	11	12	.42	9.5	.34	9
Seeks Praise or Approval	13	24	. 42	9.5	. 23	11.5
Seeks Physical Affection	1	2	. 30	11	. 22	13
Seeks Evaluation	15	16	. 24	12	. 17	24
Imitates	81	82	. 21	13	. 47	6
Seeks Leadership	48	49	. 20	24	. 36	8

tecome apparent. Seeks Information, Responsive to Teaching, and Seeks : Elp or Guidance all were ranked higher for Adult Orientation, as would be expected. Moreover, Seeks Physical Proximity, Imitates, and Seeks Leadership were ranked higher for the Child Orientation construct, suggesting that behaviors directed toward other children subordinated task-oriented responses to social goals. We shall return to this topographical question in a later section.

It is quite clear, then, that the first cluster represents autonomous achievement strivings in which social responses are subordinated to individualized, task-oiiented goals. For convenience, this cluster henceforth will be referred to as "task-oriented." It is not surprising that task-oriented children direct their social behaviors more toward adults than toward peers, since adults are more competent in explaining task requirements, providing help, giving recognition for accomplishments, etc. (Honig, Caldwell, \& Tanienbaum, 1970). Sucn children appear to be satellizers (Ausubel, 1957) who may be attempting to achieve standards of competency which they attribute to and value in adults (Emmerich, Goldman, \& Shore, 1971; Kohlberg, 1969).

By contrast, the second cluster reflects affiliative tendencies toward peers in which task requirements and individual achievements are subordinated to interaction processes and goals. This cluster henceforth will be referred th as "person-oriented."

Interestingly, certain scales correlated positively with construct measures at both poles of the Task Vs. Person Orientation dimension. As seen in Table 12, these scales were: Smiles and/or Laughs, Gets Intrinsic Gatisfaction from Activity, Recovers Quickly from Frustration or Threat,

Table 12
Mean Construct Correlations Across Subgroups for Scales Positively Correlated
Both with Task and Ferson Orientation Measures

	Construct Measure																	
Scale	2	2	3	4	5	6	7	8	9	10	11	13	14	15	16	12	17	18
Smiles and/or laughs (U.P.50)	. 42	. 46	. 19		. 02	-. 10	-. 42	-. 24	-. 08	. 27	. 21	. 10	. 07	-. 04	. 01	. 36	. 23	. 18
Gets intrinsic satisfaction from activity or task (U.P.62)	. 28	. 43	. 33	. 13	. 01	-. 18	-. 46	-. 30	-. 10	. 27	. 18	. 29	. 05	-. 02	. 07	. 31	. 21	. 28
Recovers quickly from frustration or threat (U.F.114)	. 08	. 09	. 02	-. 06	-. 05	-. 14	-. 13	. 03	-. 06	. 12	. 21	. 24	. 13	. 08	. 04	. 28	. 14	. 18
Ignores frustration or threat (U.P.125)	-. 04	. 04	. 01	. 08	. 05	$-.09$	-. 04	. 07	$-.16$. 06	. 12	. 32	. 14	. 14	. 00	.24	. 07	. 14
```Active-Passive (B.P.9)```	. 50	.56	. 52	. 20	-. 08	-. 35	-. 71	-. 45	. 00	.56	.17	. 20	. 06	. 02	. 06	. 29	. 31	. 27
Energetic-Apathetic (B.P.10)	. 55	. 57	. 39	. 00	-. 09	-. 32	-. 65	-. 38	. 03	. 54	. 13	. 10	-. 01	-. 16	. 04	. 38	. 55	. 29

Ignores Frustration or I'hreat, Active Vs. Passive, and Energetic Vs. Apathetic. I'hese scales alsc tended to be located closest to the construct of Loving or the cixcumplex. Evidently, the child who exhibjts much positive affect, energy, and invulnerability to frustration also is quite capable of combining both task- and person-orientations.
"'hese findings clarify the third dimension's location relative to the circumplex plane. Crossing the circumplex close to the construct, Loving, the task-orientation pole extends above the circumplex with its termination located between the two Cooperative constructs, while the person-orientation pole terminates directly below the circumplex close to the construct, Sociable.

## Discussion

In summary, most of the Bipolar Scales and the majority of Unipolar Scales can be placed, with considerable invariance across the eight subgroups, into a three-space defined by the circumplex ordering of social constructs together with a third dimension of Task Versus Person Orientation.

Thus, the circumplex model clearly orders individual differences amon $\otimes$ preschool children from predominantly black lower class families. Since this model initially was formulated from samples which included many white middle class children (Becker \& Krug, 1964; Schaefer, 1961), the present findings indicate its invariance across the races and socioeconomic levels, at least in young children.

Although less clear, previous research suggests that Task Vs. Person Orientation also is an important dimension of individual differences in middle class children. At the very least, the task-oriented pole oi this dimension
resembles the familiar constructs of autonomous achievement (Beller, 1948; Crandall, 1963), competence motivation (Kohlberg, 1969; White, 1959), intrinsic motivation (Hunt, 1965), and similar constructs often included in general multivariate models of personal-social behavior in children (Damarin \& Cattell, 1968; Digman, 1965). For example, Emmerich (1964) found evidence for a three-dimensional structure in middle class preschoolers that was quite similar to that found here, although in the earlier study the task vs. person polarity (called Interpersonal Vs. Impersonal Orientation) was interpreted somewhat differently. However, most previous models have not singled out the present contrast between task-oriented and person-oriented patterns of behavior. Consequently, only further research can determine whether the exact placement of the third axis relative to the circumplex plane holds in other observation settings, at other age periods, and in middle class children at this age.

Specification of a dimension's meaning requires simultaneous consideration of both its internal properties and its pattern of relationships with other dimensions in the same domain. Considered in isolation, the correlations reported in Table 7 suggest that autonomous achievement striving in conjunction with task-oriented social responses directed toward adults generally is uncorrelated with participation in joint activities with peers. However, consideration of the locations of both of these poles in relation to the total structure indicates that the correlation between these two poles is moderated by the child's location on the circumplex. Obviously, the child who is Withdrawn or Distrusting can be neither task-nor person-oriented (Table 8). But it is also the case that the child who exhibits extremely outgoing
behaviors on the circumplex (high activity level, resistance to frustration, expressions of positive affect, etc.) is also likely to exhibit both taskand person-oriented patterns of behavior (Table 12). In short, there is A curvilinear rejationship between outgoingness and the tendency for children to become polarized on the dimension of Task Vs. Person Orientation, with maximal polarization occurring at a noderately high level of outgoingness.

A fuller understanding of the present structure depends upon further analyses of relationships between the 18 constructs and processes from other domains, including antecedent and concurrent influences. Such analyses should nelp clarify whether the present structure represents (1) no more than a description of the configuration of personal-social "states" at a given point in time, (2) stable individual differences in personality organization, (3) a aynamic model for predicting developmental change, and/or (4) differences in child behaviors associated with environmental variations. The analyses which follow bear on the first three of these interpretations, while the fourth will be investigated in future studies.

A Structural-Developmental Model
The present structure leads to the following specuiations concerning a network of pathways or routes along which developmental char.ge occurs at this age in the classroom context (Block, in press; Emmerich, 1968a; Van Den Daele, 1969). First, there is a general route shared by most children, extending from the "introverted" constructs of Submissive, Withdrawn, and Distrusting toward the "extroverted" constructs of Loving, Sociable, and Assertive. Children would be expected, of course, to vary in their rates of development along this
pathway. Moreover, it would not be surprising if some children develop unevenly by moving back and forth on this dimension while sustaining a forward thrust over longer time spans, whereas other children may become "fixated" at some point or "regress" more or less permanently. Initial changes along this dimension seem to occur along one of two major routes around the circumplex, one via Compliant, tine other via Defiant-Hostile. Other sets of pathways are introduced by Task Vs. Person Orientation. For example, children who are extremely task oriented also are likely to interact minimally with others, even with adults, whereas less extremely task-oriented children would exhibit many more task-related social responses directed toward adults. Also, children who are extremely person oriented may be so distracted by the flux of peer stimulation that they do not exhibit the more complex reciprocal and complementary interaction skills of less extremely person-oriented children. Moreover, it will be noted that different degrees of "freedom of movement" are associated with the child's "location" within the structure. The extremely introverted child can change in one of two directions, each around the circumplex. Also, the task-oriented child and the personmoriented child can "progress" only by becoming increasingly similar to each other. Between these two extremes there is maximization of the polarity between task and person orientation, and it is within this range that the greatest number of alternative pathways becomes $2 v a i l a b l e$. Finally, as the child moves closer to the extroverted extreme, more routes on the circumplex itself become available. For example, a moderately task-oriented child could almost as easily follow the sequence of Cccperative-Assertive-Social-Loving as that of Cooperative-Loving.

A possible example of developmental change within this model is found in a previous study in which interpersonal-negative children became more poised over time (Emmerich, 1964), as if they had shifted in the present structure from Defiant-Hostile or Assertive to Sociable or Loving. Also, impersonalpositive children in the earlier study tended to become somewhat insecure over time, perhaps in a shift from extreme Task Orient, : on toward greater sociableness accompanied by initial difficuities in coping with the more assertive features of peer interactions.*

While many of these implications cannot be tested rigorously in the sresent study, they do provide a framework for the analyses which follow. For example, when evaluating mean differences attributable to sex, age at entry into a preschool program, and period of measurement (Fall Vs. Spring), the 18 construct measures will be considered in terms of alternative pathways of change. Also, in the analyses of stability of individual differences, personality change will be explored by considering both traditional stability coefficients (within-construct correlations between Fall and Spring) and transformation coefficients; i.e., Fall-Spring correlations between constructs presumed to be adjacent along certain pathways, such as around the circumplex.

## Further Results for the Fall X Spring Sample

Table 13 reports cell means for the Sex $X$ Age of Entry $X$ Period (Fall $X$ Spring) breakdown, and Table 14 summarizes the Analysis of Variance for each of the 18 construct measures.

[^2]Table 13
Sex X Age X Period (Fall Vs. Spring) Subgroup Means

Construct	No.	Boys				Girls			
		Younger		Older		Younger		Older	
		$\mathrm{FaIl}_{1}$	Spring	$\mathrm{FaOl}_{1}$	Spring	$\mathrm{FaIl}_{1}$	Spring	$\mathrm{Fall}_{1}$	Spring
Sociable	1	4.72	4.89	4.79	4.93	4.58	4.74	4.85	4.82
Loving	2	5.04	5.04	5.16	5.13	5.00	4.99	5.20	4.99
Cooperative-Interpersonal	3	4.79	4.82	4.91	4.89	4.80	5.05	5.12	4.92
Cooperative-Impersonal	4	4.61	4.79	4.65	4.70	4.75	5.05	5.00	4.93
Compliant	5	4.47	4.49	4.41	4.53	4.39	4.56	4.65	4.53
Submissive	6	3.92	3.86	3.73	3.71	3.89	3.85	3.76	3.74
Withdrawn	7	5.73	5.75	5.59	5.61	6.10	5.66	5.72	5.75
Distrusting	8	6.67	6.72	6.40	6.55	6.85	6.56	6.36	6.40
Defiant-Hostile	9	11.50	11.44	11.67	11.53	11.61	11.76	11.31	11.47
Assertive	10	4.45	4.51	4.65	4.62	4.30	4.59	4.39	4.57
Adult Orientation	11	6.66	6.95	6.21	6.53	6.71	7.41	6.39	7.57
Autonomous Achievement	13	4.86	5.05	5.06	4.61	4.79	5.92	5.58	5.09
Cognitive Activity	14	. 37	. 39	. 49	. 55	. 53	. 64	. 63	. 75
Fine Manipulative Activity	15	1.12	1.13	1.07	1.22	1.27	1.24	1.28	1.22
Artistic Activity	16	. 75	. 66	. 65	. 57	. 80	. 83	. 74	.74
Child Orientation	12	6.20	6.99	5.93	7.69	5.50	6.64	5.85	6.89
Gross Motor Activity	17	1.18	1.20	1.23	1.27	. 64	. 83	. 79	. 93
Fentesy Activity	18	1.09	1.00	1.23	1.17	.87	. 94	. 93	. 91

Table 14

Summaries of Analyses of Variance: Sex X Age X Period (Fell $l_{1}$ Vs. Spring)

Construct	No.	$F$ Values						
		$\begin{gathered} \text { Sex X Age }{ }^{\text {a }} \\ \text { X Period } \\ \hline \end{gathered}$	Sex $\times$ Age ${ }^{\text {a }}$	$\begin{aligned} & \text { Sex X } \\ & \text { Period } \end{aligned}$	$\begin{aligned} & \text { Age X } \\ & \text { Period } \end{aligned}$	$S e x^{\text {b }}$	Age ${ }^{\text {b }}$	Period ${ }^{\text {c }}$
Sociable	1	. 57	. 60	. 74	1.15	1.53	2.36	5.23*
Loving	2	. 85	. 00	1.11	1.54	. 86	3.42	1.86
Cooperative-Interpersonal	3	4.83*	. 00	. 08	7.51**	4.87*	3.07	. 11
Cooperative-Impersonal	4	2.24	. 73	. 00	9.08**	23.90***	. 13	8.12**
Compliant	$\stackrel{1}{ }$	4.06*	1.45	. 11	. 76	1.19	. 79	. 98
Submissive	6	. 00	. 17	. 0	. 14	. 01	5.65*	. 49
Withdrawn	7	2.01	. 00	1.88	1.68	1.55	1.54	1.13
Distrusting	8	. 48	. 29	1.95	1.80	. 19	7.42**	. 01
- Defiant-Hostile	9	. 05	4.13*	1.81	. 02	. 01	. 44	. 05
Assertive	10	. 01	. 93	5.47*	1.24	2.60	2.91	6.93**
Adult Orientation	11	. 31	. 37	2.41	. 38	2.22	. 89	8.72**
Autonomous Achievement	13	1.44	. 06	1.33	7.42**	4.57*	. 13	. 22
Cognitive Activity	14	. 01	. 13	. 95	. 09	16.07***	7.26**	3.50
Fine Manipulative Activity	15	. 71	. 05	1.69	. 45	4.44*	. 02	. 17
Artistic Activity	16	. 04	. 06	1.39	. 01	5.56*	2.57	. 89
Child Orientation	12	2.52	. 04	. 25	2.63	5.16*	1.43	48.62***
Gross Motor Activity	17	. 09	. 30	1.99	. 01	$55.97 * * *$	2.69	$3.88{ }^{\text {\% }}$
Fantasy Activity	18	.38	1.40	. 8.9	. 06	12.10***	2.39	. 27
$\begin{aligned} & a_{d f_{1}}=1, d f_{2}=592 \\ & b_{d f_{1}}=1, d f_{2}=593 \\ & c_{d f_{1}}=1, d f_{2}=595 \end{aligned}$								

Sex X Age X Period Interactions
A Sex $X$ Age $X$ Period Interaction was present for that sector of the circumplex which included Cooperative-Interpersonal (p < .05), CooperativeImpersonal (n.s.), and Compliant ( $p<.05$ ). As seen in Figure 1 , these behaviors increased only slightly in boys betreen the Fall and Spring, whereas they increased considerably between these periods in Younger Girls and decreased in Older Girls. It would appear, then, that cooperativeness and compliance develop more rapidly in girls than in boys during this period. However, the presence of opposite developmental trends in Younger and Older Girls suggests these behaviors represent phases or milestones in development rather than endpoints resulting in enduring sex differences.

It is also noteworthy that constructs opposite to these three measures on the circumplex, such as Distrusting and Defiant-Hostile, did not exhibit the converse pattern, indicating that bipolar social behaviors are not necessarily under the control of the same developmental processes.

## Sex $X$ Age Interaction

Older Boys were more Defiant-Hostile than Younger Boys, whereas Younger Girls were more Defiant-Hostile than Older Girls (p < . 05). Perhaps behaviors associated with this construct serve different functions in the sexes at this age. 'Their greater presence in Older than in Younger Boys could be part of a developing masculine orientation, whereas the opposite pattern in girls mignt reilect greater vulnerability to social frustration and threat in younger, cresumably less socially mature girls.


## Sex X Period Interaction

As seen in Figure 2, girls but not boys became increasingly Assertive between the Fall and Spring ( $\mathrm{p}<.05$ ) . This finding suggests that Younger Girls are developing interpersonal skills which help reduce the occurrence of social frustration and/or which modulate their responses to it. Other implications of this finding are discussed later.

## Age X Period Inter隹tion

Figure 3 indicates that younger children increased in Autonomous Achievement from Fall to Spring, whereas older children decreased in this behavior between these periods ( $\mathrm{p}<.01$ ). This pattern is similar to that already noted for constructs denoting cooperativeness and compliance, at least in girls, suggesting again that a developmental insrease in certain behaviors may be followed by decreases at a higher level of maturity.

## Age Main Effects

A common age difference was present foit that sector of the circumplex which included Submissive ( $\mathrm{p}<.05$ ), Withdrawn (n.s.), and Distrusting ( $\mathrm{p}<.01$ ). These behaviors decreased with age, as would be predicted from the present structural-developmental model, although the developmental shift for Withdrawn was not significant. Older children also engaged in more Cognitive Activity than Younger children ( $\mathrm{p}<.01$ ).

## Period Main Effects

Subjects were more Sociable ( $p<.05$ ), more adult-oriented ( $p<.01$ ), more child-oriented $(2<.001)$, and engaged in more Gross Motor Activity


$$
\begin{aligned}
& 5.50 \\
& 5.45- \\
& 5.40- \\
& 5.35- \\
& 5.30- \\
& 5.25- \\
& 5.20- \\
& 5.15- \\
& 5.10- \\
& 5.05- \\
& 5.00-1 \\
& 4.95- \\
& 4.90-1 \\
& 4.85- \\
& 4.80
\end{aligned}
$$

$z_{<}^{2}$
$\sum_{\Sigma}$
( $p<.05$ ) during the Spring than during the Fall. This pattern reveals important changes along the major pathway, especially in the region where the third dimension intersects the circumplex plane.

## Sex Main Effects

Girls exhibited more Autonomous Achievement (p<.05), Cognitive Activity ( $\mathrm{p}<.001$ ), Fine Manipulative Activity ( $\mathrm{p}<.05$ ), and Artistic Activity (p $<.05$ ) than boys, whereas boys exhibited more child-oriented behaviors ( $\mathrm{p}<.05$ ), Sross Motor Activity ( $p<.001$ ), and Fantasy Activity ( $p<.001$ ) than girls. Some of these differences are perhaps best seen as evidence for sex typing, esperially in the case of Gross Motor Activity, but it is of interest that an underlying basis for these aifferences is Task Vs. Person Orientation in the present model, with girls exhibiting more task-oriented behaviors and boys more person-oriented behaviors. Whether this outcome also would characterize a predominantly white middle class sample remains unclear. While there is some evidence that preschool middle class girls exhibit more Autonomous Achievement than boys (Emmerich, 1966), the present sex difference with regard to Task Vs. Person Orientation has not been well documented in midde class samples, since, as noted earlier, this particular dimensior has not been emphasized generally in previous research. It remains for future studies to determine whether this sex difference refiects a "deficit" in boys relative to girls in this sample with regard to task competencies and achievement motivation, as suggested by recent discussions of the impact of family organization within economically disadvantaged black subcultures (Bronfenbrenner, 1967).

Individual Stabilities Within Subgroups
Table 15 presents Fall $X$ Spring stability coefficients within the four sex-age subgroups for each of the 18 construct measures. The fact that these coefficients generally were quite low is not surprising, as measurement within periods was based upon only one 30 -minute sample of behavior.

Low stability of individual differences can be the consequence of several factors, including systematic developmental change (Emmerich, 1968a, 1969a; Kagan \& Moss, 1962; Schaefer \& Bayley, 1963). Since measurement within periods was limited in the present study, it becomes difficult to disentangle attenuation of stability due to nonoptimal measurement from that due to substantive factors. Nonetheless, certain findings are interpretable in relation to the present structural-developmental model.

First, it appears that some measures were more consistently stable than others. Specifically, constructs at the extremes of the extroversionintroversion axis on the circumplex tended to be somewhat more stable. (Inspection of Table 5 indicates that these variations in stability were not due simply to corresponding variations in rater reliability.) While any conclusion from the present data is highly tentative, these findings suggest that individual change is less likely to occur at the extremes of the major developmental pathway.

## Developmental Iransformations

The question of individual stability on separate construct measures is only one aspect of the broader problem of predicting developmental change within the total structure. In dealing with this larger issue, consideration needs to be given both to temporal correlations within measures (stabilities)

Table 15
Fail ${ }_{1} X$ Spring Stability Coefficients Within Subgroups

Construct	No.	Younger   Boys	Younger   Girls	Older   Boys	Older   Girls
Sociable	1	.16	.33	.38	.45
Loving	2	.23	.21	.22	.14
Cooperative-Interpersonal	3	.30	.21	.18	.07
Cooperative-Impersonal	4	.27	.14	.34	-.06
Compliant	5	.09	.02	.24	-.06
Submissive	6	.31	.27	.24	.35
Withdrawn	7	.29	.27	.33	.26
Distrusting	8	.17	.12	.31	.19
Defiant-Hostile	9	.12	.08	.18	-.03
Assertive	10	.15	.34	.34	.17
Adult Orientation	11	.36	.32	.34	.31
Autonomous Achievement	13	.05	-.08	.11	.04
Cognitive Activity	14	.10	.16	.18	.21
Fine Manipulative Activity	15	.03	.13	.23	.16
Artistic Activity	16	.11	.16	.10	.21
Child Orientation	12	.14	.32	.30	.19
Gross Motor Activity	17	.28	.13	.26	-.03

and to temporal correlations between measures (transformations). 'I'he followile procedure was adopted to detect the latter kind of change. Within each sex-age group, a construct measured in Fall, was correlated with all 18 measures taker. in the Spring. Also, the same construct measured in the Spring was correlated with all 18 measures taken in Fall ${ }_{1}$. If, for any particular measure within a particular subgroup, Fall_-to-Spring correlations differ in nattern from those for Spring-to-Fall ${ }_{1}$, such a difference may be interpretable as a systenatic developmental change, perhaps in terms of the present model. Of course, this kind of analysis is less meaningful when temporal correlations are very low, as was often the case here. Consequently, the present search for developmental transformations is limited to those constructs within subgroups having at least one Fall, X Spring correlation (other than the stability coefficient) that was $\geq+.30(\underline{p}<.001$, two-tailed). These correlations are reported in Table 16.

The logic used in interpreting findings reported in Table 16 is as follows. Each major column of the table represents a construct within a subgroup having at least one Fall, $X$ Spring correlation meeting the above criterion. Within each mejor column, paired correlations represent predictions from the construct to the other constructs, one from Fall ${ }^{-t o-S p r i n g}$, and the other from Spring-toFall $_{1}$. If these paired correlations are of approximately the same magnitude (and in the same direction), Fall ${ }_{1}$-to-Spring and Spring-to-Fall predictions are temporally symmetrical and therefore provide no basis for inferring the presence of developuental change. On the other hard, if the Fall - to-sprine correlation is high relative to its Spring-to-Fall $l_{\text {counterpart, teriporal }}$ asymmetry is inferred and the change is considered a develonmental snift.

Fall, X Spring Transformation Correlations Within Subgroups


Table 16 （Cont＇d）

Construct	No．	Older Boys Sociable		Older Boys   Defient－   Hostile		Older Boys   Autonomous Achievement		Older Girls   Sociable		Older Girls   Withdrewn $\mathrm{F}_{1} \rightarrow \mathrm{~S} \quad \mathrm{~S} \rightarrow \mathrm{~F}_{1}$
		$\mathrm{F}_{1} \rightarrow$ S	$\mathrm{S} \rightarrow \mathrm{F}_{1}$	$\mathrm{F}_{1} \rightarrow$ S	$S_{S \rightarrow F_{1}}$	$\mathrm{F}_{1}-\mathrm{Sj}$	$\mathrm{S} \rightarrow \mathrm{F}_{1}$	$\mathrm{F}_{1} \rightarrow \mathrm{~S}$	$S \rightarrow \mathrm{~F}_{1}$	
Sociable	1	．38＊	． $38 *$	． 07	． 04	－． 10	． 04	．45＊	．45＊	－． $31-.32$
Loving	2	． 31	． 19	． 14	－． 03	－． 05	． 05	． 25	．28	－． $14-.20$
Cooperative－Interpersonal	3	． 09	． 06	． 01	－．11	． 13	． 09	． 11	． 16	． $00-.16$
Cooperati：e－－Impersonal	4	． 03	－． 09	－． 19	－．17	． 28	． 13	－． 08	． 03	． $15-.03$
Compliant	5	－． 01	－． 09	－．2＇t	－． 19	． 17	－． 12	－． 15	． 12	． $22-.14$
Submissive	6	－． 07	－． 14	． 15	－． 0.4	－． 15	－． 16	－． 25	－． 11	.36 .11
Withdrawn	7	－． 33	－． 27	－． 14	． 02	－． 10	－． 11	－． 32	－． 31	．26＊．26＊
Distrusting	8	－． 22	－． 07	． 01	－． 03	． 11	－． 10	－． 12	－． 25	－． 02.28
Defient－Hostile	9	． 04	． 07	．18＊	．18＊	－． 22	－． 03	． 02	． 01	－． 10.06
Assertive	10	． 23	． 25	． 30	． 10	－． 05	． 10	． 34	． 23	－． $29-.23$
Adult Orientation	11	． 05	－． 08	． 03	． 00	． 30	． 05	． 12	． 07	－． $01-.03$
Autonomous Achievement	13	． 04	－． 10	－． 03	－． 22	．11＊	．11＊	－． 07	－． 12	． 22.04
Cognitive Activity	14	－ 9	－． 01	． 03	－． 15	． 21	－． 05	． 06	－． 14	－．0e－． 04
Fine Manipulative Activity	15	－． 06	－． 14	－． 03	－． 08	． 30	． 10	－． 16	－． 30	$\overbrace{}^{-} .1$－
Artistic Activity	16	． 01	－． 05	． 01	． 03	． 11	． 07	． 03	－．12	－．ここ ．ここ
Child Orientation	12	． 23	． 25	－． 04	$-.03$	． 08	． 07	． 24	．ころ	
Gross Motor Activity	17	． 11	． 23	． 14	． 11	－． 09	－． 01	． 18	． 1	－． 0 －
Fentasy Activity	18	． 07	． 18	． 03	． 04	． 06	． 06	． 26	． 11	－$\because \because$－

＊Stability Coefficients
$\because$ ote：－Colum：lecadings define the subgroup，construct，and kird of temporal corrin－int $1 \rightarrow 0$ sier．ilies correlation of the construct measured in Fally with all other measures take：．i！： the Spring．$S \rightarrow F_{1}$ sienifies correlation of the construct measured in the Spribe with ali other m：asures taken in Fall 1 ．

Inspection of $\mathrm{I}^{\prime}$ able L , indicates that changes for Assertive in Younger Girls ind for Gociable in Older Girls were temporally symetricai, and so these reslilts will not be considered further.

Unly one construct (Child Orientation) met the criterion in Younger Boys. As seen in Taole 16 , Younger Boys who were child-oriented in the Fall tended to become increasingly Loving in the Spring. Also, the Fail ${ }_{1}$-to-Spring correlations with Child Orientation exhibited a perfect cireumplex ordering, with the above transformation coefficient being the highest in this circumplex ordering. It is noteworthy that this correlation's value of .33 was considerably higher thar the stability coefficient of .14 for the construct! In terms of the structural-developmental model, it would appear that younger boys who start out being sociable toward peers tend to express increasingly greater positive arfect toward others during the academic year.

Developmental change occurred on five constructs in Younger Girls. As seen in Table 16, Younger Girls who were Sociable, Loving, or CooperativeInterpersonal in the Fall became increasingly Assertive in the Spring. Those who were Cooperative-Interpersonal in the Fall also tended to vecome increasingly Loving in the Spring. Again, these transformation coefficients were embedded in circumplex orderings of $\mathrm{Fall}_{1}$-to-Spring correlations, and were higher than their respective stability coefficients. These developmental changes reflect shifts across or around the circumplex that are consistent with the structural. develommental model.

Younger Girls who were Distrusting in the Fall tended to become increasingly Withdrawn in the Spring, suggesting a minor retreat from a somewhat more outgoing, stance.

Youner Girle wio were shild-oriented in the fald tended to becone incuresirgly aduit-nvierted in the spring. Since Youncer Girls who wer: chidd-oriexted in the Fall a.iso tended to be child-oriented (and Loving) in the jpring, wis change seems to refiect a depolarization of Adult vs. Child orientition. aio finding will be exarineà later in greater detail.

Oider Eoys who were Sociable in the Pall tended to become joving in the Spring, although this shift was less marked then those noted abcve. Also, Cider boys who were Defiart-icstile in the Fall tended to become Assertive in the Spring, and Autonomous Achieven.nt in the Fall was correlated with fdult Orientation and Fire Manipulative Activity in ©he Spring. All of these shanges are highiy consistent with the present structurai-developmentai model.

Older Cirls who were Withdrawn in the Fall tended to become increasingly Sabmissive in the Spring.

## lheoretical Implications

Transformational firdings within subgroups as well as mear differences between subgroups strongly indicate that developmental change tencis to occur between regions that are adjacent within the total structure. More generally stated, constructs within the personal-social domain are interrelated in a way that is explicated by an orderine paradigm, and developmential changes amone ordered constructs follow a principle of structural proximity (Foa, 1968).

Earlier it was suggested that the nost pervasive developmental trend within the structure would be increasing outgoingness and positiveness. With one exception, the transformations reportea above were cunsistert with. this expectation. The exception was a tendency : Vouger Girls who were Wistrustirg ir the Fgil to becone increasingly withdrawr in the sprirg.
$\because$ :urse, this cxeption i. understandable if one assumes that develorment
 $\therefore$ :unsons of sex typing. Swen an interpretation receives iurther support WW:, tne findiges that Older lirls who were withdrawn in the Fall became increasingly Eumissive in the Spring, and that Older soys who were Derianticstile in the Fall became increasingly Assertive in the Spring. Sowever, the usual sex typing interpretation does not account for otiner findings in Eirls, who generaly became increasingly Assertive Irom Fall to Spring (Figure 2), especially if they were younger ana started out as Sociable, Loving, or Cocperative-Interpersonal in the Fall (Table 16). However, it will be noted that the behaviors under discussion are sidject to general social norms as well as more specific sex-typed norms. There is evidence that roughly the same generai soci.l norms of'ten apply to boys and girls (Emmerich, 19690; Emmerich, Goldman, \& Shore, 1971; Stolz, 1967), whereas norms governing responses to child deviations from these general normative expectations tend to be sex typed (Bronfenbrenner, 196l; Hatiield, Ferguson, \& Alpert, 1967 ; Stulz, 1967), With regard to the present findings, this interpretation suggests that defiance and aggression genexally are proscribed at this age regardless of sex, although they may be tolerated more in boys thar in girls, whereas assertiveness would be considered appropriate in both sexes.

Resuits for the Fall ${ }_{1} \times \mathrm{Fall}_{2}$ Sample

## Hean Difierences

Eucn subject in this sample was rated at two different times in the Fall (fin. and mui), and analyses were performed on these two ratings combined.

Fable l7 presents Fiall + Fall, means for the Sex $X$ Age of Entry X Ferioi (Early Vs. Late) breakdowns, and Table i民 summarizes the Analysis of Variarce for each of the 18 construct measures.

Changes between the two periods within the Fall were massive. ine nature and magnitudes of these changes signify once again the general developmental trend toward more outgoing behaviors (Tables 17 and 18). Moreover, comparisor of Tables 14 and 18 reveals that period effects were considerably more powerful within the Fall than between the Fall and Spring, indicating that this general developmental change is accelerated during the Fall. It is also of interest that the pattern of change from Early to Late Fall was perfectly ordered on the circumplex, as seen from the relative magnitudes of F Values given in Table 18.

The greatest amount of charne on the circumplex occurred near that region where it is intersected by the dimension of Task Vs. Person Orientatior. Moreover, Autonomous Achievement increasec markedly between Early ard Late Fall in all subgrours ( $p<.001$ ), whereas the Fall $X$ Spring analysis of this behavior suggested that it reaches an asymptote during the Spring in older children. These findines signify that the rapid and generaiized changes noted in the Fail occurred primarily in the "middle" region along the major structural pathway.

Sone effects reported in Iable 18 were roughly the same as those for the Fall ${ }_{1}$ X Spring sample (Table 14). For example, in bo:h sets of analyses Submissive, withdrawn, and Distrusting were greater in Younger thar in Oider Chilaren, significantly so in the case of Submissive (ps < . 0s). Apparently, the older chila's relatively greater outgoingness holds generally throughout

Table l:"
Sex K Aze X Feriod (Early Vs. Late) Subgroup Meanis
for Fell $1+$ F'alle Measures

Corstruct	No.	Boys				Girls			
		Younger		Older		Youneer		Maer	
		Early	Late	Eariy	Late	Early	Late	sarly	Late
$\therefore$ Oiable	1	4.50	4.69	4.45	4.85	4.28	4.48	4.92	4.76
1,00ires	2	4.90	5.16	4.96	5.29	4.83	5.08	4.98	3.21
Woperative-Interpersonal	3	4.58	4.85	4.66	5.11	4.65	5.07	4.83	4.89
Cooperative-Impersonal	4	4.52	4.78	4.46	4.77	4.71	4.96	4.85 ;	i. 83
Compliar.t	5	4.30	4.42	4.15	it. 49	4.33	4.66	4.42	4.5
Jubmissive	6	3.85	3.76	3.69	3.59	3.82	3.87	3.68	3.64
Withdrawn	7	5.98	5.65	5.78	5.18	6.31	5.76	5.95	5.72
Listrusting	8	7.11	6.88	7.06	6.52	7.22	6.87	7.17	6.43
Veitiant-Hostile	9	11.66	11.22	11.97	11.44	11.70	10.92	11.33	11.28
Assertive	10	4.35	4.54	4.51	4.85	4.24	4.28	4.36	i. 149
Adult Orientation	11	7.79	7.44	7.21	7.37	7.75	7.56	8.60	7.07
Autonomous Achievement	13	5.34	6.90	5.84	7.16	5.61	7.04	5.68	6.97
Cognitive Activity	14	. 40	. 45	. 56	. 64	. 45	.56	. 52	.64
Fine Marapulative Activity	15	1.32	1.25	1.32	1.29	1.32	1.37	1.45	1.33
Artistic Activity	16	. 77	. 92	. 61	.78	. 80	1.06	. 96	. 83
chica Orientation	12	6.43	6.40	5.65	6.78	4.85	6.36	6. 12	7.78
?ross Motor Activity	17	1.14	1.19	1.14	1.37	. 76	. 66	. 7	. 85
: artasy Activity	18	1.27	1.13	1.24	1.32	. 91	. 97	1.02	.9\%

Table 18
Summaries of Analyses of Variance: Sex X Age X Period (Early Fall Vs. Late Fall)

Construct	No.	F Values						
		$\begin{gathered} \text { Sex X Age } \\ \text { X Period } \\ \hline \end{gathered}$	Sex X Age ${ }^{\text {b }}$	$\begin{aligned} & \text { Sex X } \\ & \text { Period } \end{aligned}$	$\begin{aligned} & \text { Age } X \\ & \text { Period } \end{aligned}$	Sex ${ }^{\text {c }}$	Age ${ }^{\text {c }}$	Period ${ }^{\text {c }}$
Socieble	1	. 19	1.12	. 11	. 49	2.01	2.63	6.96**
Loving	2	. 12	. 07	. 11	. 05	. 38	2.76	14.62***
Cooperative-Interpersonel	3	3.16	1.35	. 32	.26	. 31	1.41	15.66***
Cooperative-Impersonal	4	1.94	. 07	1.8 C	. 76	10.00**	. 07	12.73***
Compliant	5	2.78	. 07	. 01	. 00	4.21*	. 09	$11.07 * * *$
Submissive	6	. 05	. 02	. 41	. 12	. 17	5.39*	. 34
Withdrewn	7	. 92	. 23	. 03	. 00	4.16*	3.01	7.81**
Distrusting	8	. 03	. 02	. 32	1.64	. 05	2.94	10.96***
Defiant-Hostile	9	1.95	.74	. 01	.97	2.21	. 96	9.94**
$\square_{0}$ Assertive	10	. 02	. 18	1.18	. 50	7.83**	6.59*	4.62*
DAdult Orientation	11	1.89	. 48	1.02	. 31	. 31	. 06	1.81
Autonomous Achievement	13	. 68	1.21	. 26	. 52	.07	. 15	25.14***
Cogritive Activity	14	. 01	. 67	. 19	. 06	. 32	4.41*	2.24
Fine Menipulative Activity	15	1.33	. 06	.43	2.73	1.87	. 56	. 46
Artistic Activity	16	2.48	. 76	. 33	1.81	3.92*	2.43	3.54
Child Orientation	12	6.87**	.67	. 11	. 22	6.39*	. 04	3.92*
Gross Motor Activity	17	. 01	.00	1.10	1.87	45.2.9***	2.12	. 97
Fantasy Activity	18	1.20	. 07	. 15	. 17	16.28***	. 84	. 09

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{df}}^{1} 1=1, \mathrm{df}_{2}=407 \\
& b_{d f_{1}}=1, d f_{2}=408 \\
& c_{d f_{1}}=1,{d f^{2}}^{2}=411
\end{aligned}
$$

$$
\begin{aligned}
{ }^{*} \underline{p} & <.05 \\
{ }^{* *} & =.01 \\
\underline{p} & <.01 \\
{ }^{* * *}{ }^{*} \underline{p} & <.001
\end{aligned}
$$

 ation was er iter in Odaer thar in Younger Chilaren ( $\mathrm{p}<.05$ ).

A ...ore detailed consideration of these differences seems unwarranted, how $\because \cdot:$ Missive period effects within the Fall could have masked other more subtic differences and interactions for the year as a whoie, already noted :t the Fall $X$ Spring analyses. More importantly, differences due io sanpling (汒. Louis data were excluded from the Fall ${ }_{1} X^{\prime}$ Fall $_{2}$ sample) could be conroundea with substantive factors in deteimining significant effects. Actuadi, cutcomes for the two sets of analyses tended to be mutually consistent, so these reasons for exercising caution do not appear to have been critical. Wevertheiess, they could have made enough of a difterence to lead to misinverpretations of minor variations in significant effects.

## Stabilities and Predictabilities

Short-term Fall $X_{1} \mathrm{Fall}_{2}$ stability coefficients for the total sample are given in Table 19. Stabilities generally were low and similar in magnitudes to those for the (longer) period between $\mathrm{Fall}_{1}$ and the Spring (Table 15). ninese findings support the earlier conclusion that several samplings of behaviors within time periods would be required to arrive at construct measures having even moderately high individual stabilities.

Agair, the pattern of differential stabilities among construct measures indicated greatest fixedness at the two extremes of the major developmental pathway.

I'emporal instabilities can be due to systematic as well as random changes. I'hree kinds of systematic change are of particular interest here. The most

Table 19
$\mathrm{Fall}_{1} \times \mathrm{Fall}_{2}$ Stebility and Multiple Prediction Correlations for the Total Sample ( $N=415$ )

Construct	No.	$r$	$\begin{gathered} R \\ F_{1} \rightarrow F_{2} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \mathrm{~F}_{\underset{\mathrm{C}}{ } \rightarrow \mathrm{~F}_{1}} \end{gathered}$
Sociable	1	$.32^{* *}$	$.43 * *$	$.44^{* *}$
Loving	2	. $28^{* *}$	$.36{ }^{* *}$	$.37^{* *}$
Cooperative~Interpersonal	3	. 19 **	$.32^{* *}$	. 31 *
Cooperative-Impersonal	4	. 09	. 27	.31 *
Compliant	5	. 17 **	. 27	$.36^{* *}$
Submissive	6	. 23 **	.45**	$.34^{* *}$
Withdrawn	7	. 39 **	$.45 * *$	$.47{ }^{* *}$
Distrusting	8	$.26 * *$	$.35{ }^{* *}$	$.35{ }^{* *}$
Defiant-Hostile	9	.20 **	$.34^{* *}$	$.30 *$
Assertive	10	.30 **	$.45{ }^{* *}$	. $45^{* *}$
Adult Orientation	11	.36 **	$.44^{* *}$	.40 **
Autonomous Achievement	13	. 06	. 27	. 27
Cognitive Antivity	14	$.22^{* *}$	$.36^{* *}$	$.36{ }^{* *}$
Fine Manipulative Activity	15	. 08	$.33^{* *}$	.28
Artistic Activity	16	. 13 *	. 28	$.34{ }^{* *}$
Child Orientation	12	$.30 * *$	. $39^{* *}$	.40 **
Gross Motor Activity	17	$.28^{* *}$	. $38^{* *}$	$.39 * *$
Fentasy Activity	18	.20 **	$.36 * *$	$.33^{* *}$

$$
\begin{aligned}
{ }^{*} \mathrm{p} & <.01 \\
{ }^{* *} \mathrm{p} & <.001
\end{aligned}
$$

Note. $-\mathrm{F}_{1} \rightarrow \mathrm{~F}_{2}$ signifies that predictors are the $18 \mathrm{Fall}_{1}$ measures; $\mathrm{F}_{2} \rightarrow \mathrm{~F}_{1}$ signifies that predictors are the $18 \mathrm{Fall}_{2}$ measures.
orvicuä is change in the chand's situation ai the time of measurement. is: exanrle, an immeaiate situational press to respona socially may ue ec powertui that it overrides whatever individual differences might be elicited ir arother kind of situation. A second kind of systematic change consists oi persorality transformations or the type reported earlier for Fall $X$ Spring subsamples. (Since the time interval between $F a l l_{1}$ and $\mathrm{Fall}_{2}$ ratings was so short, Getilileu examination of transformations within the Fall seems unwarranted.) A third kind of change could arise from interactions between personality and situaticnaiz factors. Here, the situation changes from time to time and situational responses vary according to the personality of the respondent. Consider the foliowir ${ }_{\mathrm{E}}$. example of likely differential relationships between press and behavior in extremely sociable and withdrawn children. For the sociable child, amount and/or intensity of social behavior probably would be roughly proportional to the strength of the situational press to respond socially. For the wittarawn child, however, this relationship seems less likely to hold.

The fact that stabilities generally were low indicates that situational varianct was considerable. On the other hand, certain stabilities (Table l9) and temporal correlation: across constructs (not reported here) did reach significant levels. While it is not possible here to disentangle the contributions of personality and personality $x$ situation variance, one global. index of such changes is the multiple correlation which predicts a construst measure at ore time from the set of 18 measures taken at another time. Exciudirat capitalization on chance, the extent to which this multip.e prediction improves unon the stability coefficient should be some (unknown) joint function of the amount of personality anà personality $x$ situation variance. In general,
persorality transformations would build up the multiple correlation by boostine the value of the highest temporal correlation, while personality $x$ situation variance would build up the multiple correlation by introducing suppressor effects.

These multiple correlations are listed in Table 19. It will be noted, first of all, that short-term predictions can be improved somewhat throush a multivariate prediction strategy, although there is a ceiling for the present data presumably due to limited sampling within time periods. It is likely that an extension of the present measurement system to include several independent ratings within time periods would lead to reasonably high multiple predictions of individual differences over time in the personalsocial domain, as has been achieved in previous research (Emmerich, 1964).

Of special interest is the finding that multiple correlations increased short-term predictability even for construct measures having the lowest stabilities, supporting the inference that systematic fersonality and/or personality x situation changes were operating.

## Construct Correlates of Masculine-Feminine and Dependent-Independent

Several Bipolar Scales including Masculine-Feminine (B.P. 2) and Dependent-Independent (B.P. 14) were excluded irom the earlier structural analyses because they were not critical in achieving a close match with the circumplex model. However, these scales can be mapped ir:to the three-space for the purpose of clarifying their meanings. The median interrater reliabilities of these scales were .82 and .65 , respectively (Apperdix E).

## Masculine-Feminine

Wable 20 presents correlations of Masculine-Feminine with each of the is construct measures scparately by sex-age-period (F'all $X$ Spring) subgroup. I'wo kinds of discontinuity are evident from these findings. First and foremost, extroverted boys were judged to be more masculine and extroverted girls were judged io be more feminine. Thus, appropriate "sex typing" covaried positively in both sexes with increasing outgoingness of behavior. This finding may be surprising in relation to traditional theories of sex-role develupment, but is generally consistent with the recent findings of Vroegh. (1968, 1971). Moreover, this difforence between the sexes with regard to the meaning of masculinity-femininity at this age is in keeping with the present structural model. Judgments about certain behavioral qualities cannot be made unless the child is sufficiently outgoing to exhibit these qualities. This conciusion seems obvious, but it also suggests that previous observation-rating studies of young children may have confounded the gereral developmental trend toward increasing outgoingness with signs taken to be specific to the development of sex typing. In particular, Hostile-Defiant (aggressive) behaviors in boys, often considered to be "masculine," and Submissive (passive) behaviors in girls, often considered to be "f'eminine," may be poor indicators of these constructs in young children since they are subsumed by the more fundamental general developmental trend. This conclusion is consistent with the earlier suggestion that general social norms for appropriate behaviors are similar for the sexes, although more specific norms dealing with violations of general norms probably are sex typed.

Table 20
Correlations of Masculine-Feminine with the 18 Construct Measures

Construct	No.	Boys				Girls			
		Younger		Older		Younger		Older	
		$\mathrm{Fa}_{3}{ }_{1}$	Spring	$\mathrm{Fall}_{1}$	Spring	$\mathrm{Fe.ll}_{1}$	Spring	$\mathrm{Fall}_{1}$	Spring
Sociable	1	. 35	. 38	. 30	. 27	-. 32	-. 02	-. 30	-. 02
Lovi:g	2	. 44	. 45	. 18	. 25	-. 33	-. 09	-. 3	-. 14
Cooperative-Interpersonal	3	. 26	. 21	. 25	. 06	-. 31	-. 13	-. 41	-. 22
Cooperative-Impersonal	4	-. 18	-. 20	-. 17	-. 21	-. 32	-. 19	-. 30	-. 40
Compliant	5	-. 03	-. 09	-. 21	-. 20	-. 15	. 05	-. 23	-. 11
Submissive	6	--. 26	-. 44	-. 44	-. 43	-. 04	. 12	. ${ }^{\prime}$	. 10
Withdrawn	7	-. 41	-. 44	-. 32	-. 33	. 35	. 16	. 46	. 27
Distrusting	8	-. 32	-. 07	-. 16	-. 19	. 33	. 01	. 39	-. 03
Defiant-Hostile	9	. 06	. 12	. 21	. 18	. 15	-. 02	. 03	. -2
Assertive	10	. 42	. 46	. 43	. 58	-. 14	-. 31	-. 26	-. 19
Adult Orientation	11	-. 08	. 11	-. 07	. 04	-. 09	-. 10	. 05	-. 14
Autonomous Achievement	13	. 07	-. 04	-. 04	. 13	-. 09	-. 22	-. 27	-. 17
Cognitive Activity	14	. 01	-. 01	. 01	-. 13	-. 04	-. 13	-. 13	-. 15
Fine Manipulative Activity	15	-. 22	-. 13	-. 28	-. 19	. 14	-. 23	. 06	-. 22
Artistic Activity	16	-. 10	-. 04	-. 13	. 09	-. 07	. 02	. 02	-. 13
Child Orientation	12	. 19	. 19	. 14	. 15	-. 32	-. 17	-. 39	-. 03
Gross Motor Activity	17	. 48	. 41	. 34	. 26	-. 05	. 21	-. 07	. 28
Fantasy Activity	18	.16	. 18	-. 07	. 30	-. 38	-. 43	-. 46	-. 25

Note.,-Positive correlations signify that the construct is associated with the Masculine pole of the Masculine-Feminine Bipolar Scale.
riters judged boys generally to be more masculine (or less feminime) tini girls ( $\mathrm{E}<.001$ ), as seen from fables 21 and 22. At first glance it seer..; Furadoxical that a comparison 0 : mean levels "validates" the construct of masculinity-femininity, whereas, as noted above, a mappinE of the construct into the overall structure does not. However, the present argument is no: that signs of sex typing were totally absent, but rather that they were sonetimes difficult to distinguish from behaviors defining the major structura? Fathway. Inspection of Table 20 indicates, for example, that Gross Motor Activity was consistently associated with masculinity, at least in boys.

Inspeat** of Table 20 also reveals developmental discortinuities withir: the sexes with regard to the meaning of masculinity-femininity. Among Younger Boys, masculinity was about equally associated with Assertive, Sociaiole, and Loving on the circump'ex, whereas among Older Boys masculinity was most closeiy associated with Assertive. It would appear that in Younger Boys it was particulurly difficult to disentangle general behavioral cues signityine outęoingness from more specific signs of masculinity, whereas these two constructs were more readily distineuished in Older Boys.

Femininity in girls was more associated with cutgoing kehaviors on the circumplex, in the Fall than in the Dpring. Moreover, femininity ingirls tenced to be somewhat more associated with Person Orientation in the Fall and with rask Orientation in the Spring. Thus, for girls, appropriate sex typing in the Fall was iffficult to distinfiish from sociality in general, whereas these two constructs were better differentiated in the Jpring.

Are such discontiruities in the mearing of a elobal construct due primarily to changing patterrs of behavior in chindren or to angngire trait

Table 21
Subgroup Means for Masculine-Feminine and Dependent-Independent (Fall X Spring)

Measure	No.	Boys				Girls			
		Younger		Older		Younger		Older	
		$\mathrm{Fall}_{1}$	Spring	$\mathrm{Fall}_{1}$	Spring	$\mathrm{Fall}_{1}$	Spring	$\mathrm{Fall}_{1}$	Spring
Masculine-Feminine	B.P. 2	4.59	4.45	4.63	4.55	3.41	3.36	3.18	3.39
Deperderit-Independent	B. P. 14	4.70	4.89	4.87	5.02	4.60	5.04	4.83	4.94

Note,--Higher scale values signify greater Masculinity and Independence, respectively.

Table 22

- Summaries of Aralyses of Variance for Masculine-Feminine and Dependent-Independent (Fall $X$ Spring)

urganization in the cognitive structures of judges? This general issue cunnot be resolved here, but certain features oi the results foint to an answer for these data. It may be obvious that children must reach some minimal threshold of outgoingness before other qualities of their behavior in natural settings can te judged adequately. However, the present findings Eiso indicate the presence of a developmental change in which the componerts of personal-scial development in general become differentiated from those signifying sex-role development in particular. Not only is the direction of this change consistent with the structural-developmental model discussed earlier, but its specific manifestations differed in the sexes, as noted above, and it was under the control of different factors in bcys and girle. Whereas age of entry was the critical independent variabie in boys, period of measuremert was the major factor associated with discontinuity in girls (Table 20). It is difficult to imagine how such a complex pattern of change In a common developmental direction coula have occurrea through trarsformations in the cognitive structures of raters.

Whether these same discontinuities would be found in midde class childrer. and/or by a different population of raters remain questions for further research. One would expect in most children that general behavioral development becomes increasingly differentiated irom signs specific to sex typing, although there are probably marked individual differences in the ages wher this differentiation process bcgins and is completed. Morecver, the present evidence for (a) developmental changes in the meaning of masculinity-femininity and ( $b$ ) sex diff?rences in the nature of these changes, appears to be consistent with: Vroegh's (1971) findings for older middle class children.

## Dependent-Independent

T'able 23 presents correlations of lependent-indeperdent with :ach w: the 18 construct measures, averaged across subproups. Gerirly, the dependency pole of this scale was most associated with introvertea behavios in gereral and Withdrawn in particular. This outcome is fenerally consistent with previous mappirgs of dependency onto the circuriplex (Maccoby \& Masters, 1970).

It is of interest that independence correlated positively and most consistently with two nonadjacent constructs on the circumplex, namely Cooperative-Interpersonal and Assertive. It would appear that cooperativeness and assertiveness both connote greater independence from other persons than Sociable and Eoving. This outcome is reasonable when viewed in the context of the present structure, although it has not been noted so explicitly in previous research. It also illustrates how a scele defined as kıpolar can be found empirically to be more complex in meaning when embedded in a larger structural network.

Since this scale extenced along the major developmertal patitway, one would expect a develomental trend in which children become increasingly independent (or less dependent). As seen in Tables 21 and 22 , inderenderce did increase from Fall to Spring (p < . O01).

Components of Adult and Child Orientation

Measures
Earlier analyses related composite measures of Adult and Child orientation to the larger structure, but did not consider their separate components in detail. An analysis of tris question by Maccoby and Masters (1970) as well

## Table 23

Correlations of Dependent-Independent with the 18 Construct Measures, Averaged Across Subgroups

Construct	No.	$\bar{r}$
Sociable	1	$.26^{*}$
Loving	2	$.38^{* *}$
Cooperative-Interpersonal	3	$.46^{* *}$
Cooperative-Impersona.	4	$.25^{*}$
Compliant	5	-.09
Submissive	6	$-.33^{*}$
Withdrawn	7	$-.47^{* *}$
Distrusting	8	$-.42^{*}$
Defiant-Hostile	9	.05
Assertive	10	$.48^{* *}$
Adult Orientation	11	-.06
Autonomous Acnievement	13	.22
Cognitive Activity	14	.05
Fine Manipulative Activity	16	.04
Artistic Activity	12	.06
Child Orientation	.05	
Gross Motor Activity	.18	.16
Fantasy Activity		

Note.--Positive correlations signify that the construct is associated with the Independent Pole of the Dependent-Independent Bipolar Scale.
${ }^{*} \mathrm{p}<.001$ (two-tailed), in at least fcur out of eight subgroups.
${ }^{* *} \mathrm{p}<.001$ (two-tailed), in at least seven ovt of eight subgroups.
as the part-whoie correlations discussed earlier (Table ll) provided bases for deriving the following component meassures.

Ar. Affiliation component was derived by sumrinf Atterpts to Conmunicate Verbally, Seeks Attention Through Positive Eid, and Friendly.

A task-oriented social category, henceforth called Information Seekin $\mathcal{3}$, Was derived from the sur. of Seeks Information, Responsive to Teaching, and Seeks fielp or Guidence. Seeks Praise or Approval and Seeks Evaluation also were task-oriented, but their greater emphasis upon social evaluation suggested the need for a distinct measure, called Recognition Seekin\&.

Part-whole correlations together with the structural-developmentai model suggested that the sum of Seeks Physical Proximity, Imitates, and Seeks Leadership signifies an immature kind of "tagging along" or Attachment to another person in which the task- and person-orierted aspects of an act are still quite undifierentiated from each other. (It will be noted that the term 'attachment' is used here in its narrow sense.)

Finally, there was interest in exploring a component not ircludec in the earlier analyses, namely Social Control. This component was incexea by the sum of Seeks Attention Through Deliberate Negative Bid, Demanding, Rejects Reasonable Request, and Bosses. In deriving these new measures, unipciar Scales $9,18,29$, and 69 were summed for the adult measure, and Unipolar Scales $10,19,30$, and 70 were summed for the child measure $H \in a i a n$ interrater reliabilities of these scales were .77, .98, .81, 1.00, .75, .76, .70, anà .76, respectively (Apperidix E).

In sumary, the following adult-and child-oriented component measures were derived: Affiliatior-Adult (ila), Information Seeking-Adult (lio),

Attachnent-Adult (1lc), Kecognition Jeeking-Adult (lld), Social Control-Adult (1le), Affiliation-Child (12a), Information Beeking-Child (l2b), AttachmentChild (12c), Recognition Seekine-Child (12d; Social Control-Cnild (12e).

In the analyses thit follow, component measures will be comparei with resard to (1) base rate frequencies, (2) locations in the overali structure, (3) mean differences among subgroups, and (4) developmental transformations within subgroups. All analyses were based upon the Fall $X$ Spring sample.

## Base Rate Frequencies

Base rate frequencies (means) for the component measures are reported for each subgroup in Table 24. Base rates for behaviors directed toward adults were higher for the two task-related components of Information Seeking and Recognition Seeking, while base rates for behaviors directed toward peers were higher for all other components. This outcome held without exception for the 40 relevant comparisons in Table 24, and in some instances comparable base rates differed by at least a factor or two. These findings strongly support the conclusion that the topographies of adult- and child-oriented behaviors are well differentiated at this age along the dimension of Task Vs. Person Orientation.

## Locations of Components Withir: the Structure

Table 26 gives correlations of the components with the original construct neasures, averaged across subgroups. (The correlations within subgroups are given in Apperdix H.) Comparable adult- and child-directed components are grouped together in Table 26 to facilitate comparisons.

$$
-75-
$$

Table 24
Subgroup Means for Adult and Child Orientation Component Measures


Table 25
Summaries of Analyses of Variance for Adult and Child Component Measures


$$
-75=
$$

Table 26
Correlations of Adult and Child Components with Construct Measures,
Averaged Across Subgroups

Construct Measures	No.	Component Measures									
		Information Seeking		Recognition Seeking		Affiliation		Attachment		Sociel Control	
Sociable	1	. 04	. 22	. 01	. 11	. 22	. 58	. 03	. 24	. 10	. 26
Loving	2	. 08	. 15	. 06	. 10	. 27	. 43	. 04	. 18	. 10	. 19
Cooperative-Interpersonel	3	. 03	. 11	. 10	. 09	. 16	. 24	-. 09	-. 02	-. 04	. 13
Cooperative-Impersonal	4	. 03	. 04	. 13	. 13	. 08	. 07	-. 10	-. 07	-. 22	-. 10
Compliant	5	. 07	. 01	. 04	. 00	. 01	. 00	. 03	. 07	-. 34	-. 29
Submissive	6	-. 02	-. 08	. 04	. 01	-. 18	-. 24	-. 04	. 00	-. 28	-. 4.4
Withdrawn	7	-. 10	-. 14	-. 09 -	-. 09	-. 32	-. 52	-. 01	-. 15	-. 11	-. 29
Distrusting	8	. 06	-. 05	-. 05	-. 06	-. 07	-. 28	. 10	-. 03	. 14	. 03
Defiant-Hostile	9	-. 04	-. 04	-. 06	-. 07	-. 04	-. 11	-. 07	-. 12	. 25	. 24
Assertive	10	. 12	. 16	. 03	. 07	. 29	. 37	. 04	. 09	. 29	. 44
Adult Orientation	11	. $72 *$	. 06	.47*	. 04	. $87 *$	. 12	. $53 *$	. 02	. 28	. 07
Autonomous Achievement	13	. 16	. 16	. 23	. 10	. 30	. 14	. 04	. 06	. 06	. 18
Cognitive Activity	14	. 25	. 08	. 15	. 01	. 25	. 08	. 15	. 03	. 07	. 04
Fine Manipulative Activity	15	.17	. 09	. 16	. 08	. 14	-. 06	. 07	-. 06	. 00	-. 10
Artistic Activity	16	. 18	. 00	. 15	. 08	. 25	. 00	. 08	-. 03	. 13	-. 02
Child Orientation	12	. 01	.53*	. 02	.26*	. 17	.79*	-. 05	.67*	. 05	. 39
Gross Motor Activity	17	-. 05	. 05	-. 05	. 02	. 08	. 32	. 02	. 22	. 10	. 23
Fantasy Activity	18	-. 06	. 16	-. 10	. 04	. 06	. 35	-. 05	. 22	. 01	. 35

*Part-Whole Correlations

As expected, the task-oriented components of Information Seeking and Recognition Seeking generally were uncorrelated with the circumplex constructs. However, Information Seeking directea toward peers was somewhat associated wion sociable, indicating that this behavior has person-oriented qualities. Also, as expested, when these task-oriented components were directed toward adults they were more closely related to Autonomous Achievement, Cognitive Activity, Fine Manipulative Activity, and Artistic Activity than when they were directed toward peers.

Affiliation directed toward children was more strongly and consistently "ssociated with Sociable on the circumplex than was Affiliation directed toward adults. Also, the former tended to be more associated with the person-oriented constructs of Gross Motor Activity and Fantasy Activity, whereas the latter was more associated with the task-oriented constructs. These findings match those discussed earlier for the third dimension, as expected.

Attachment to acults generally was uncorrelated with all constructs in the structure. Together with the relatively low base rate for this component, this outcome indicates that Attachment to adults is a rather poor descriptor of individual differences at this age, at least in the classroom setting. This conclusion appears to be consistent with previous research on predominantly white midale class children (Maccoby \& Masters, 1970).

Attachment to peers was somewhat more associated with outgoing social behaviors on the circumplex, and tended to be associated with the personoriented constructs of Gross Motor Activity and Fantasy Activity.

In reviewing the literature on generalization of responses from adults to children, Maccoby and Mcsters (1970) concluded that attention seeking
but not proximity seeking is part of a general reciprocal interaction system at this age. The above topographical findings for Affiliation and Attachment support this view. Moreover, the correlation between Affiliation-Adult and Af filiation-Child averaged .25 across subgroups and was significant ( P < .OOl, two-tailed) in five of the eight subgroups, whereas the correlation between Attachment-Adult and Attachment-Child averaged .05 across subgroups and did not reach statistical significance in any of the subgroups. The present structural findings indicate that it is precisely because Affiliation toward adult and child targets have similar locations on the circumplex that these measures shared common variance in this and previous studies. Thus, it was motivation to affilate with others rather than dependency motivation in its traditional sense which characterized many social responses directed toward both adult and child targets. Here we reiterate the point made earlier that the meaning of a specific behavior depends not only upon its internal relationships with other presumed indicators of the same construct (homogeneity), but also and perhaps more fundanentally upon its relationships with other constructs distributed throughcut the domain.

It is of interest that Attachment to peers was somewhat associated with social outgoingness on the circumplex and had a relatively high base rate. Thus, while Affiliation and Attachment were highly differentiated in relationships with adults, relationships with peers probably included an attachment component. We shall return to this point later in the discussion.

Turning to the component of Social Control, this behavior directed toward an adult target was associated with Assertive and Defiant-Hostile on the
circumplex and witi Ault orientation on the third dimension. (It wiil be recalled that scales included in the measure of Social control were not ori Einally part of the Adult Orientation sonstruct measure.) However, Sosial Control directed toward peers was more clearly associatea with Assertive than with Defiant-Hostile, and also was consisuently associated with all three percon-oriented constructs. These findings not only support the conclusion that (negative) tactics of social control at this age index a certain amount of social outgoingness (Maccoby \& Masters, 1970), they also reveal that the meaning of social control on the circumpls: depends upon whetner the target is an aduit or another child.

Mean Differences Among. Subgroups
Analyses of Variance of subgroup means are summarized in Table 25. Since the $\dot{\text { b }}$ o affiliation components were most similar to the original Adult and Child Oxientation measures, we would expect these components to share common effects with the original measures (Tables 13 and 14). This was the case with regard to the increase between Fall and Spring in both components and the sex difference for Affiliation toward crildren. However, there were additional effects when affiliation components were separated from the original measures. Ihe Fall-to-Spring change in Affiliation toward adults was greater in girls than in boys (Sex X Period Interaction, p < .05) . Apparently, with greater classroom experience an adult orientation becomes especially salient for girls, perhaps because girls tended to be more task-oriented generally than boys (Tables 13 and 14). Also, older children generally exhibited greater Affiliation toward peers tharı did younger children (p $<.05$ ), a tendency that wes less clear in the original findings.

With regard to the two task-oriented components of Information Seeking and Recognition Seeking, the only effect was for Information Seeking toward peers to increase from Fall to Spring ( p < .05) .

Perhaps the most interesting finding occurred for Attachment to peers, which increased between Fall and Spring ( $\mathrm{p}<.01$ ) and was greater in boys than in girls ( $\mathrm{p}<.05$ ). The first of these findings supports the earlier suggestion that relationships with peers includes an attachment component at this age. Indeed, this same finding occurred for three of the five components directed toward peers, but only for one component directed toward adults, suggesting that the former share a common developmental trend not shared by the latter. The observed sex difference $i s$ consistent with the previous findings indicating greater person-orientation in boys than in girls (Tables 13 and 24).

Social Control directed toward adults increased with age in boys and decreased with age in girls (Sex X Age Interaction, $\mathrm{p}<.05$ ). This outcome is consistent with the earlier suggestions that (1) negative behaviors generally are proscribed but are tolerated more in boys than in girls, and (2) sex typing is increasing with age during this period.

## Developmental Tranformations

It will be recalled that Younger Girls who were child-oriented in the Fall tended to become increasingly adult-oriented in the Spring as well as remaining child-oriented in the Spring (Table 16). The question now arises whether this developmental transformation was "carried" more by certain components than by others.
"dole 2 presents relevant transformation correlations for Younger Uiris. It is clear that Younges Girls who directed affiliation toward peers in the Fall tended to be those who directed affiliation both toward peers $(r=.37)$ and adints ( $r=.34$ ) in the Spring. There were also (weaker) transformations between Affiliation Child in the Fall and Information Eering-Adult in the Sprine, and between Attachment-Child in the Fill and (1) Arfiliation-Adult and (2) Information Seeking-fdult in the Erine.

Since Asfiliaion was the primary carrier of this transformation in Ourber Girls, tre possibility arises that the developmentai change on this particuiar component might also apply to other subgroups. The transSormation correlaticns presented in Table 28 indicate that the same developmental change did occur in Oider Boys, with a less clear but similar trend occurring in Younger Boys.

These findings are surprising because they reveal that relationships with children are precursors of relationships with adults during this age period. The present sample tended to be a little older than those of previous stuaides, and so this change couid have been a later one in a twcphase developmental sequence. It is not unreasonable to expect the first phase of such a sequence to be a shift from adults to peers or siblings in the family followed by a shift back to adults in their roles as teachers in the classroom. Moreover, such a two-phase sequence may be especially characteristic of children from economically disadvantaged families where curetaring and other socialization functions are especially likely to be "hocated to older siblings. Of course, further research is needed to test :use interpretations.

Table 27
Component Transformation Correlations in Younger Girls

Component Measures	No.	$\begin{aligned} & \text { Affil } \\ & \mathrm{F}_{1} \rightarrow \mathrm{~S} \end{aligned}$		$\begin{aligned} & \text { Child } \\ & \text { Infor } \\ & \text { See } \\ & \mathrm{F}_{1} \rightarrow \mathrm{~S} \end{aligned}$	-Direct   mation king $\mathrm{S} \rightarrow \mathrm{F}_{1}$ $\qquad$	Comp Attac $\mathrm{F}_{1} \rightarrow \mathrm{~S}$	pontnt   hment $\mathrm{S} \rightarrow \mathrm{~F}_{1}$	$\begin{gathered} \text { Recog } \\ \text { Se } \\ \mathrm{F}_{1} \rightarrow \mathrm{~S} \end{gathered}$	nition   king $\mathrm{S} \rightarrow \mathrm{F}_{1}$
Affiliation-Adult	11 a	. 34	. 18	. 19	. 07	. 25	-. 01	. 11	. 06
Information Seeking-Adult	116	. 24	. 07	. 11	. 04		-. 12	. 07	-. 06
Attachment-Adult	11 c	. 18	. 13	. 07	. 09	. 20	. 16	-. 08	. 04
Recognition Seeking-Adult	110	. 18	. 02	-. 02	-. 12	. 06	-. 11	. 00	-. 09
Affiliation-Child	12 a	.37*	. $37^{*}$	. 24	. 18	. 15	. 16	. 09	. 18
Information Seeking-Child	12b	. 18	. 24	.26*	.26*	. 12	. 11	.16	. 02
Attachment-Child	12c	. 26	. 15	. 11	. 12	.13*	.13*	. 09	-. 02
Recognition Seeking-Child	12a	. 18	. 09	. 02	. 16	-. 02	. 09	.03*	.03*

*Stàility Coefficiert
Note. --Column headines define the component measures and kind of temporal correletions.
 measured in the spring. $S \rightarrow F_{1}$ signifies norreietior of the childmirected component measured in the Sprine with omporerts messured in $\mathrm{Fall}_{1}$.

Table 2.8
Transformation Correlations for the Affiliation Component
in Three Subgroups

Component Measures	No.	Affiliation-Child					
		Younge $\mathrm{F}_{1} \rightarrow S$	$\begin{gathered} r \text { Boys } \\ S \rightarrow F_{1} \end{gathered}$	$\begin{aligned} & \text { Olde } \\ & \mathrm{F}_{2} \rightarrow \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { Boys } \\ & S_{S} \rightarrow F_{1} \end{aligned}$	$\begin{aligned} & \text { Olde } \\ & \mathrm{F}_{1} \rightarrow \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { Girls } \\ & S_{1} F_{1} \end{aligned}$
Affiliation-Adult	11.	. 24	. 13	. 38	. 10	. 14	. 15
Affiliation-Child	12a	.16*	.16*	. $34 *$	. $34 *$	.36*	. $36 *$

Note.--Column headings define the subgroup and kind of temporal correlations. $\mathrm{F}_{1} \rightarrow \mathrm{~S}$ signifies correlation of the child-directed component measured in $\mathrm{Fall} \mathrm{F}_{1}$ with components measured in the Spring. $S \rightarrow F_{1}$ signifies correlation of the childdirected component measured in the Spring with components measured in Fall. .

Table 29
Component Transformation Correlations for Social Control-Child

Component Measures	No.	Social Control-Child							
		Young $\mathrm{F}_{1} \rightarrow S$	$\begin{aligned} & \text { Boys } \\ & \mathrm{S} \rightarrow \mathrm{~F}_{1} \end{aligned}$	$\begin{aligned} & \text { Oide } \\ & \mathrm{F}_{1} \rightarrow \mathrm{~S} \end{aligned}$	$\begin{aligned} & r \text { Boys } \\ & S \rightarrow F_{1} \\ & \hline \end{aligned}$	Younge $F_{1} \rightarrow S$	$\begin{gathered} \text { er Girls } \\ S_{S} \rightarrow F_{1} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Older } \\ & \mathrm{F}_{1} \rightarrow \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { Girls } \\ & S \rightarrow F_{1} \end{aligned}$
Affiliction-Adult	12 a	. 07	. 24	. 35	-. 02	. 20	. 13	. 17	. 14
Information Seeking-ddult	12 b	. 02	. 18	. 08	-. 01	. 12	. 06	. 07	. 12
Attachment-Adult	11.	. 00	. 12	. 10	. 09	. 07	-. 01	-. 02	. 07
Recognition Seeking-Adult	11d	. 06	. 15	-. 06	-. 09	. 03	. 06	-. 01	. 01
Social Control-Adult	lle	-. 07	. 12	. 08	. 10	-. 04	. 06	. 12	-. 08
Affiliation-Child	12 a	. 15	. 21	. 10	. 18	. 20	. 15	. 07	. 24
Information Seeking-Child	12b	. 13	. 10	. 09	. 07	. 24	. 12	. 05	. 03
Attachment-Child	12c	. 12	. 11	-. 11	. 05	. 12	. 05	. 04	. 14
Recognition Seeking-Child	12d	. 10	. 12	-. 07	. 01	. 18	. 11	-. 10	-. 06
Sucial Control-Child	12e	.22*	.22*	.13*	.13*	.11*	.11*	.01*	.01*

*Stability Coefficient
Fote, - Column headings define the subgroup and kind of temporal correlations.
$F_{1}+S$ signifies correlation of the child-directed component measured in Fali ${ }_{1}$ with components messured in the Spring. $S \rightarrow F_{1}$ signifies correlation of the child-directed component measured in the Spring with components messured in $\mathrm{Fall}_{1}$.

Tinally, it mikht ve asked whether the same transformation was carried by the component of Social Control. It is important to recall the earlier Inding that Social Control directed toward peers was located further along the Eenerai developmental pathway on the circumplex than was Social Control dizected toward adults, making it unlikely that the same kind of developmental change would occur for this component. Inspection of the fifth row of Table 29 confirms this expectation. However, there was a child-to-adult shift, at least in Older Boys, from Social Control toward peers in the Fall to A: filiation toward adults in the Spring $(r=.35)$, reflecting a developmental change both with respect to target and behavioral content on the circumplex. inis outcome is reminiscent of a similar transformation found in preschool middle class children (Emmerich, 1964).

Conclusions

## Organization of the Personal-Social Domain

Structural findings strongly support the conclusion that preschool personel-social behaviors in predominantly black lower class children can be mapped into a three-space structure defined by the circumplex together with the dimension of Trask Vs. Person Orientation. This correlationad patterning of the 18 constructs was reasonably invariant across the eight subgroups classified by sex, age at entry into a preschool program, and period of measurement. It also appeared to provide a sufficient framework for interpreting the meanings of remaining Bipolar and Unipolar Scales.

The circumplex ordering replicates previous studies of predominantly white middle class children, but it is less well known from previous research
whether the dimension of Task Vs. Person Orientation would be as salient for white middle class children of this age. The pattern of correlations defining the third dimension was consistent and theoretically meaningful, suggesting that it may have been largely overlooked in the past as a primary descriptor of individual differences in young children. Another possibility amenable to empirical test (see below) is that this dimension reflects an especially important basis of variation among the classroom environments sampled in the present investigation, resulting in groupings of children who were taskoriented, person-oriented, or in some instances both.

There was striking and consistent evidence at this age that social behaviors directed toward adults in the classroom are primarily task-oriented and serve achievement motives, whereas social behaviors directed toward other children are primarily person-oriented and serve affiliation motives.

The basic structure proved to be heuristic for interpreting the underlying meanings of both global and moleculer behavioral judgments. For example, there was evidence for developmental discontinuity in the meaning of masculinityfemininity. Also, by mapping component measures of Adult and Child Orientation onto the larger structure, theoretically important similarities and differences in the topographies of behaviors directed toward adult and child targets were clearly revealed.

It is clear that a precise understanding of the child's behavior in the classroom requires a description in terms of multiple constructs. The need for such a profile is seen especially fam the finding of a curvilinear relationship between the extent of involvement in classroom activities and polarization of individuals along the third dimension.

## structural-Developmental Model

The ordering of constructs suggested a developmental model of personality change. Generally it was expected that major developmental shifts would occur along the pathway from constructs s; gnifying introversion to those signifying Greater extroversion. As the child becomes more outgoing within the classroom. a variety of alternative routes become available which are defined by the circumplex and the dimension of Task Vs. Person Orientation. Together with certain assumptions concerning broad social norms and sex typing, this developmental model proved to be very useful in interpreting patterns of nean differences among sex, age at entry, and period subgroups. It also provided a systematic basis for explaining Fall $X$ Spring developmental transformations within subgroups.

The present structure thus proved to be more than just a multivariate description of personal-social "states" measured at a given point in time, since the principle of structural proximity (Foa, 1968) had explanatory power with regard to developmental change. Laymen and psychologists alike have persisted in the belief that the direction and extent of personality change is partially determined by the individual's personality characteristics prior to change, but there have been few empirical demonstrations that such a belief is warranted. It is therefore of particular interest that the present structural-developmental model helped account for personality changes revealed both in the subgroup comparisons and in the transformational analyses within subgroups.

It remains an open question whether similar patterns of developmental change would be found in midale class children. Our hypothesis is that the
same basic developmental model won?d be applicable to middle class children, perhaps especially at a younger age. While the relevant norms probably do not exist, it is our impression that middle class children within the age range of the present sample typically are located further along the major developmental pathway.

Methodological Implications
Beyond its utility for organizing the personal-social domain, the present structure also proved to be illuminating with regard to the impact of sex of child, age of entry into preschool, period of measurement, and their interactions. In many instances a specific source of variance on the independent variable side resulted in a "spread of effect" (Foa, 1968) among the ordered personal-social constructs. As stated by Foa: "When the effect of the experimental treatment is observed on a set of ordered variables, it may be predicted that the change will be maximal for a given variable, less strong for the variables in proximity to the first one, and still less so for variables further remote from it" (Foa, 1968, p. 463).

The importance of preserving the aatural ordering of personal-social constructs is seen in the remarkable sensitivity of the present analyses to the differential impact of certain independent variables. For example, despite the fact that Compliant and Submissive were adjacent constructs on the circumplex, they were clearly influenced by different sources of variance on the independent variable side (Tables 14 and 18). Mureover, there were important irstances when presumed "opposites" on the circumplex were not influenced by the same sources of variance, indicating that bipolar social behaviors are not necessarily under the control of the same processes. These
vutcomes indicate that structural methodologies in general and facts analysis in particular need to become increasingly sensitive to detecting and preserving natural orderings among constructs within the personal-social domain.

There was evidence that simultaneous assessment of personal-social constructs distributed throughout the domain leads to multiple predictions which improve unon univariate predictions. Systematic developmental transformations as well as systematic personality $x$ situation variance were believed tc provide the underpinnings for this phenomenon. The present findings were limited to the special aase where repeated measures were Jaken over a brief time span, but the same phenomenon might well arise when predicting to (or from) measures in other domains. Of course, it remairs unknown whether this effect would be increased or decreased when measures are based upon more than a single sampling of the child's behaviors within age periods.

## Implications for Educational Programs

The present study does not constitute an evaluation of early educational programs for the disadvantaged. Comparable ratings were not collected on disadvantaged children not in programs during 1969-70, and there is no middle class control grcup. Moreover, it remains for future studies to determine whether subgroup differences and transformations within subgroups take on a different pattern when independent variables associated with the child's home experiences and classroom environment are considered. However, the present findings do provide some initial clues on the impact of these programs, taken as a whole.

There were demonstrable global changes during the year, most of which were in a direction consistent with accepted socialization goals for children of this age. Subjects generally became increasingly involved in appropriate ways with tasks, adults, and peers. This general trend was particularly accelerated toward the middle of the first semester, indicating that many children adapted effectively to the basic requirements of a preschool environment within a reasonable period of time.

There were also marked individual differences in development during this period. As with the total group of children, most subgroup changes and transformations within subgroups occurred in desirable directions. However, the findings were complev, making it difficult to arrive at general recommendations for programs. These complexities arose not only from subtle interactions on the independent variable side, but also from the fact that multiple behavioral outcomes were differentially related to the independent variables. For example, younger girls developed the most with regard to cooperativeness and compliance, but some exhibited more defiance-hostility than older girls. Also, relative to their older peers, younger children tended to remain more submissive (and to engage in less cognitive activity) throughout the year, but some younger children did increasingly engage in more active interpersonal relations.

Sex differences on the Task Vs. Person Orientation dimension were marked. Girls were more oriented toward task accomplishments in conjunction with adultoriented relationships, whereas boys were less achievementmoriented and interacted more with peers. Since person-oriented children were quite likely to exhibit rather complex patterns of interpersonal relations, including role taking, it
is not altogether cleir that a deficit interpretation adequately characterizes this contrast, at least at this age. Nevertheless, iurther attention needs to be given to the deficit hypothesis with regard to this sex difference.

The findings indicate that while certain behavious develop in a cumulative fashion, the course of social development is often curvilinear (e.g., increase folicwed by a decrease). For example, there was tentative evidence that the rapid growth of Autonomous Achievement within the Fall tended to level off in the Sprirg, even decreasing in older children. At one level, such an Outcome appears to complicate the problem of evaluation, since we cannot rely simply upon linear changes to signify increasing personal-social maturity. on the other hand, findings of this type are rather congenial to stage theories of eco development (Emmerich, 1963a, 1969a; Kohlberg, 1969; Loevinder, 1966). Moreover, the present structural-developmental model provides a framework for assessing these changes. For example, it is clear that the child who is neither task- nor person-oriented is less mature than one who is either of these, but it is also likely that the most socially mature child is both task- and person-oriented. Future analyses of the possible "accelerating" effects of certain home and classroom influences could lead to a more precise classification of individual profiles among the 18 construct measures in terms of personal-social maturity level.

## Bystem of Personal-Social Measurement

The present instrument and measurement strategy were reasonably successtul in achieving this study's eims. From the standpoint of optimal measurement, an extensive series of methodological studies would be required, of course, to disentangle critical from less important features of the procedures.

Moreuver, measurement procedures adopted in any particular study would be tailored to that study's particular aims. Nevertheless, it may be useful to summarize likely strengths and weaknesses of the present measurement system. Regarding possible strengths, we call attention to the following aspects of the present system of measurement: (1) Assessment in a setting where systematic environmental presses are not likely to overwhelm individual differences. (2) Simultaneous measurement of a comprehensive set of personalsocial constructs. (3) Simultaneous measurement of multiple indicators of the same presumed constructs. (4) Inclusion of both specific (defined) and broad (undefined) behavioral categories, with judgments on the former preceding judgments on the latter. (5) Implementation of a continuous self.correcting feedback procedure in applying category definitions. (6) Assessment of interrater reliabilities throughout the study. (7) Use of consensus ratings as primary data. (8) Close continuous monitoring of data collection in the field. (9) Intensive training prior to data collection. (10) Selection of juages who meet performance criteria at the completion of training.

For the purpose of making comparisons among subgroups thought to differ in mean level, a single 30 -minute observation proved to be satisfactory though not optimal. In order to even approach optimal measurenent of individual differences within subgroups, however, our hunch is that at least three and Ferhaps more independent ratings need to be collected and summed within a short time span.

It would be desirable to reduce the total number of judgments required of raters, although there were no obvious indications that the sheer magnitude of the rating task diminished measurement accuracy. Tnspection of Appendix $E$

Jifests that elininating a scale on the basis of relatively low interrater rejiability would nct be in easy judgment to make, and could result in 'rbitrary exciusions. More definite recommendations can be made to exciude Biplar Sciles whose meaning varied across sites and Unipolar Scales havine iow frequencies withirn subgroups. Such exclusions were noted earlier and also are indicated in Appendix C. Fowever, even here judgment should be exercised sinct: present base rate frequencies may not be representative of other child parulations.
ihe present study revealed the importance of inciuding many unipolar :cales (behavioral cues) which contribute unique as well as shared variance to each of the 10 circumplex constructs derived from the Bipolar Scales. This selection process would be facilitated by inspecting the circumplex correlates of Unipolar Scales given in Appendix G. Also, new Unipolar Scales mignt be defined in order to provide adidional behavioral cues for certain constructs or the circumplex.

The structural findings suggest that the present set of Bipolar Scales could be improved as follows. (1) Certain scales can be redefined to provide an even better match with the circumplex model. (2) A scale signifying "emotioral-demanding" behavior might be added in order to better watch the circumplex model of becker and Krug (1964). (3) Since "opposite" behaviors on the circumplex were found in some instances to be influenced by different processes, opposite poles on scales should be assessed independentiy. For example, the present scale of Pebellious-Compliant (B.P. 4) could be split into two unipolar scales of Rebellious and Compliant.

## fmplications for Future Studies

The present study provides a reasonably complete set of personal-social constructs and individual child measures which can be related in future work to antecedent, concurrent, and subsequent processes measured in the larger Ionesitudinal study. Since the essential relationships anong personal-social constructs have been established in the present study, and since a reasonably explicit developmental model of personality change has been formulated here, it should be possible to carry out future analyses in a highly systematic fashion.

The following questions would seem to be of special relevance for future analyses which relate the present personal-social measures to first and second year data from the larger longitudinal study. (1) How do variations in maternal beliefs, attitudes, and mother-crild relationships influence child personal-social behaviors in the classroom? (2) How do variations in teacher beliefs, attitudes, classroom atmospheres, and teacher-child relationships influence child personal-social behaviors? (3) Does the extent and nature of the match between maternal and teacher characteristics determine the child's personal-social behavior in the classroom? More specifically, do affective and instructional style characteristics of mothers and teachers interact to produce effects differing from those predicted simply by adding the maternal and teacher effects fourd in " 1 " and " 2 " above? (4) Are the above relationships moderated by such factors as the child's sex, age at entry, and period if neasurement (Fall Vs. Spring)? (5) when such factors as maternal and temener characteristics are used in conjunction with child sex and age of entry te clessify subgroups, what happens to Fall X Sprirg stabilities
und transformations? A guiding hypothesis here would be that as more (significant) variarce attributable to group factors is removed by means of the above subdivisions, individual-difference stability and transformation correlations within groups will reveal increasingly precise differential fatterns of personality change during the academic year. (6) What are the relitionships between personal-social behaviors in the classroom and cognitive, styistic, and personality variables assessed independently by means of test Instruments? (i) Are relationships between test variables and personal-social ciassrocm behaviors moderated by such factors as the child's sex, age at entry, classroom atmosphere, and period of measurement (Fall Vs. Spring)? (8) Do specific abilities and styles assessed by means of test instruments relate to fersonal-social behaviors, and how do such relationships differ from those for more general indexes of cognitive maturity?

## References

Ausubel, D. P. Theory and problems of child development. New York: Grune \& Stratton, 1957.

Baumrind, D., \& Black, A. E. Socialization practices associated with dimensions of competence in preschool boys and girls. Child Development, 1967, 38, 291-328.

Becker, W. C., \& Krug, R. S. A circumplex model for social behavior in chilaren. Child Development, 1964, 35, 371-396.

Beller, E. K. Dependency and independence in young children. Unpublished doctoral dissertation, State University of Iowa, 1948.

Beller, E. K. Dependency and independence in young children. Journal of Genetic Psychology, 1955, 87, 23-25.

Block, J. Ways of personality development. In press.
Bronfenbrenner, U. Some familial antecedents of responsibility and leadership in adolescents. In L. Petrullo \& B. M. Bass (Eds.), Leadership and interpersonal behavior. New York: Holt, 1961.

Bronfenbrenner, $U$. The psychological costs of quality and equality in education. Child Development, 1967, 38, 909-926.

Bronson, W. C. Central orientations: A study of behavior organization irom cnildhood to adolescence. Child Development, 1966, 37, 125-155.

Coan, R. W. Facts, factors, and artifacts: The quest for psychological meaning. Psychological Review, 1964, 71, 123-110.

Crandall, V. J. Achievement. In H. W. Stevenson (Ed.), Child Psychology: The sixty-second yearbook of the national society for the study of education. Part I. Chicago: University of Chicago Press, 2963. Pp. 416-459.

Dumurin, F. L., \& Ćstedl, R. B. Personality factors in early childhood and their reiation to intelligence. Monographs of the Society for Research in Child Development, 1968, 33(6, Serial No. 122).

Digman, J. M. Child behavior ratings: Further evidence for a multiple-factor model of child personality. Educational and Psychclogical Measurement, 1965, 25, 787-799.

Educational 'Pesting Service. Disadvantaged children and their first school experiences: Theoretical considerations and measurement strategies. Princeton, N. J.: December 1968, PR-68-4 (2 vols.). Prepared under Contract OEO 4206 and Grant CG-8256, Office of Economic Opportunity. (ED 037 486)

Educational Nesting Service. Disadvantaged children and their first school experiences: From theory to operaticns. Princeton, N. J.: August 1969, PR-69-12. Prepared under Grant H-8256, Department of Health, Education and Welfare. (ED 043 397)

Educational Testing Service. Disadvantaged children and their first school experiences: Preliminary description of the initial sample prior to school enrollment. Princeton, N. J.: August 1970, PR-70-20 (2 vols.). Prepared under Grant CG-8256, Department of Health, Education and Welfare. (Vol. 1, ED 047 797; Vol. 2, ED 047 798)

Emmerich, W. Continuity and stability in early social development. Child Development, 1964 , 35, 3il-332.

Emmerich, W. Continuity and stakility in early social development: II.
Teacher ratings. Child Development, 1966, 37, 17-27.

Emmerich, W. Personality development and concepts of structure. Child Development, 1968 , 39, 671-690. (a)

Emmerich, W. Children's personal and social development. In Educational
Testing Service, Disadvantaged children and their first school experiences: Theoretical considerations and measuremint strategies. Princeton, N. J.: ETS 1968 (b). Pp. DI-D8. PR-68-4 ( 2 vols.). Prepared under Contract OEO 4206 and Grant CG-8256, Office of Economic Opjortunity. (ED 037 486)

Emmerich, W. Models of continuity and change in development. In Educational
Testing Service, Disadvantaged children and their first school experiences: From theory to operations. Princeton, N. J.: ETS 1969 (a). Pp. 221-229. Prepared under Grant H-8256, Department of Health, Education and Welfare. (ED 043 397)

Emmerich, W. The parental role: A functional-cognitive approach. Monographs of the Society for Research in Child Development, 1969, 34 (8, Serial No. 132). (b)

Emmerich, W., Goldman, K. S., \& Shore, R. E. Differentiation and development of social norms. Journal of Personality and Social Psychology, 1971, 18, 323-353.

Emmerich, W., \& Wilder, G. Classroom observation rating scale (Personality). In Educational Testing Service, Disadvantaged children and their irirst school experiences: From theory to operations. Princeton, N. J.: ETS 1969. Pp. 131-145. Prepared under Grant H-8256, Department of Health, Education and Welfare. (ED 043 397)

Foa, U. G. Convergences in the analysis of the structure of interpersonal behavior. Psycholcgical Review, 1961, 68, 341-353.

Foa, U. G. Three kinds of behavioral changes. Fsychological Bulletin, 2968 , 70, 460-473.

Guttman, L. A general nonmetric technique for finding the smallest coordinate space for a configuration of points. Psychometrika, 1968, 33, 469-506. Hartup, W. W. Dependence and independence. In H. W. Stevenson (Ed.), Child Psychology. National Society for the Study of Education Yearbook, Part 1 . Chicago: University of Cnicago Press, 1963. Pp. 333-363.

Hatfield, J. S., Ferguson, L. R., \& Alpert, R. Mother-child interaction and the socialization process. Child Development, 1967 , 38, 365-414. Heathers, G. Emotional dependence and independence in nursery-school play. Journal of Genetic Psychology, 1955, 87, 37-58.

Honig, A. S., Caldwell, B. M., \& Tannenbaum, J. Patterns of information processing used by and with young children in a nursery school setting. Child Development, 1970, 41, 1045-1065.

Funt, J, McV, Intrinsic motivation and its role in psychological development. In D. Levine (Ed.), Nebraska Symposium on Motivation, 1965, 13, 189-282. Lincoln: University of Nebraska Press.

Kagan, J., \& Moss, H. Birth to maturity. New York: Wiley, 1962.
Kohlberg, L. Stage and sequence: The cognitive-developmental approach to socialization. In D. A. Goslin (Ed.), Handbook of socialization theory and research. Chicago: Rand McNally, 1969.

Lingces, J. C. An IBM 7090 program for Guttman-Lingoes smallest space analysis-I. Belavioral Science, 1965, 10, 183-184.

Loevinger, J. The meaning and measurement of ego development. American Psychologist, 1966, 21, 195-206.

Lorr, M., \& McNair, D. M. Expansion of the interpersonal behavior circle. Journal of Personality and Social Psychology, 1965, 2, 823-830.

Maccoby, E., \& Masters, J. C. Attachment and dependency. In P. H. Mussen (Ed.), Carmichael's manual of child psychology. Vol. 2. New York: Wiley, 1970. Pp. 73-157.

Marshall, H. R., \& McCandless, B. R. Relationships between dependence on adults and social acceptance by peers. Child Development, 1957, 28, 413-419.

Martin, W. E. Singularity and stability of profiles of social behavior. In C. B. Stendler (Ed.), Readings in child behavior and development. New York: Harcourt, Brace \& World, 1964. Pp. 448-466.

McCandless, B. R., Bilous, C. B., \& Bennett, H. L. Peer popularity and dependence on adults in preschool-age socialization. Child Development, 1961, 32, 511-518.

Moore, S., \& Updegraff, R. Sociometric status of preschool children related to age, sex, nurturance-giving, and dependency. Child Development, 1964, 35, 519-524.

Roskam, E., \& Lingoes, J. C. Minissa-I: A Fortran IV (G) program for the smallest space analysis of square symmetric matrices. Behavioral Science, 1970, 15, 204-205.

Schaefer, E. S. Converging conceptual models for material behavior and for child behavior. In J. C. Glidewell (Ed.), Parental attitudes and child behavior. Evanston, Ill.: Thomas, 1961.

Schaefer, E. S., \& Bayley, N. Maternal behavior, child behavior, and their intercorrelations from infancy through adolescence. Monographs of the Society for Research in Child Development, 1963, 28(3, Serial No. 87).

Sears, R. R., Rau, L., \& Alpert, R. Identification and chiid rearing. Stanford, Calif.: Stanford University Press, 1965.

Stolz, L. M. Influences on parent behavior. Stanford, Calif.: Stanford University Press, 1967.

Van Den Daele, L. D. Qualitative models in developmental analysis. Developmental Psychology, 2969 , $1,303-310$.

Vroegh, K. Masculinity and femininity in the preschool years. Child Development, 1968, 39, 1253-1257.

Vroegh, K. Masculinity and femininity in the elementary and junior high school years. Developmental Psychology, 1971, 4, 254-261.

Walker, R. N. Some temperament traits in children as viewed by their peers, their teachers, and themselves. Monographs of the Society for Research in Child Development, 1967, 32(6, Serial No. 114).

White, R. W. Motivation reconsidered: The concept of competence. Psychological Review, 1959, 66, 297-333.

Wohlwill, J. The age variable in psychological research. Psychological Review, 1970, 77, 49-64.

APPENDIX A

Ratine Format

OBSFIKVER RATING: OF CHILDNEN
Cilld $\qquad$ M F CODE $\qquad$
THACHER $\qquad$ CODE $\qquad$
OBSERVER $\qquad$ CODE $\qquad$
CO-OBMERVER $\qquad$ CODE $\qquad$
DATE $\qquad$ TIME OBSERVATION BICUN $\qquad$ COMPLETED $\qquad$
Ycar Montr Day

Scale:	$0=$ Attribute totally absent during period of observation
	$1=$ Attribute occasionally present during period of observation
	$2=$ Attribute frequently present during period of observation
	$3=$ Attribute continually present during period of observation

1. Seeks physical affection from adult
2. Seeks physical affection from other child
3. Seeks help or guidance from adult
4. Sceks help or guidance from other child
5. Sceks physical proximity of adult
6. Sueks physical proximity of other child
? Seeks attention from adult through positive bid
$\qquad$ 8. Seeks attention from other child through positive bid
7. Jeeks attention from adult through deliberate negative bid
8. Seeks attention from other child through deliberate negative bia
9. Seeks attention from adult through weak bid
10. Seeks attention from other child through weak bid
_13. Beeks praise or approval from adult
_14. Seeks praise or approval from other child
$\qquad$ 15. Seeks evaluation from adult
11. Seeks evaluation from other child
$\qquad$ 17. Seeks or makes a comparative evaluation
$\qquad$ 18. Demanding of adult
12. Demanding of other child
$\qquad$ 20. Tries to eet adult to do what self is expected to do
13. Triec to get other child to do what self is expected to do
$\qquad$ 22. Exhibits helplessness
$\qquad$ 23. Fejects positive bid from adult
$\qquad$ 24. Rejects positive bid from other child
___ 2 . Neeks adult's permission to do something
___ 2t. Seeks permission of other child to do something
$\qquad$ 27. Con'orms to routine or routine request of adult
$\qquad$ 28. Conforms to routine or routine request of other child
14. Fejects reasonable request of adult
$\qquad$ 30. Weitects reasonable request of other child
__ 31. Enegages in complementary ochavior
$\qquad$ 32. Eneages in parallel activity
$\qquad$ 33. Exhibits interest in or concern for other in distress
15. Fraises or expresses approval toward adult
$\qquad$ 35. Praises or expresses approval toward other child

36 . Expresses crĩicism of adult
37. Expresses criticism of other child
38. Reciprocates with adult
39. Reciprocates with other child
40. Tries to "make up" with adult
$\qquad$ 41. Tries to "make up" with other child
42. Friendiy toward adult
$\qquad$ 43. Friendly toward other child
44. Nurturant toward adult
45. Nurturant toward other child
46. Exhibits leadership
47. Behaves competitively
48. Seeks leadership of adult
49. Seeks leadership of other child
$\qquad$ 50. Smiles and/or laughs
51. Engages in gross motor activity
52. Engages in fine manipulative activity
53. Engages in cognitive activity
54. Engages in fantasy activity
55. Engages in artistic activity
56. Concerned with satisfaction of physical need
57. Iakes initiative in carrying out own activity
58. Tries to pursue difficult task
59. Attempts to overcome obstacles by himself
60. Exhibits persistence
Cl. Completes activity by himself
62. Gets intrinsic satisfaction from activity or task
63. Praises self
64. Threatens to act aggressively toward adult
65. Inreatens to act aggressively toward other child

Cte. Possesbive
67. Verbally aggressive toward adult

C8. Verbally aggressive toward other child
69. Bosses adult
.$\quad 7$
70. Bosses other child
$\qquad$ 71. Physically aggressive toward adult
72. Physically aggressive toward other child
$\qquad$ ?3. Deliberately ageressive toward property
'4. Expresses negative fceling about self, possession, or own product
$\qquad$ $\because$, Exribits visual curiosity
$\qquad$
$\qquad$ TO. Exhibits active curiosity
$\qquad$ $\because$. .eeks intormation from adult
$\qquad$ . 3. jetks irformation from other child
___ Re'sponsive to teaching by adult
$\qquad$ 30. Kesponsive to teaching by other child
$\qquad$ 81. lmitates behavior of adult $8<$. Imitates behavior of other child

$\qquad$
33. Instructs or demonstrates

8'+. Attempts to communicate verbally to adult
85. Attempts to communicate verbally to other child
_ Se. Communicates meaningful complex idea to other child
87. Communicates meaninoful complex idea to adult
88. Verbally loud
89. Talks to self
90. Difficult to understand
91. Does not concentrate on activity
92. Inattentive when adult communicates to him
93. Inattentive when other child comunicates to him
94. Incomplete communicative act
95. Exhibits goal-directed activity
96. Shows planning in pursuing activity
97. Flexible in substituting goal
98. Corrects or modifies performance to meet own standard
99. Prod.dcts or activities have common theme
100. Perseverates on activity or task
101. Perseverates verbally
102. Preoccupied with own thoughts
_103. Unable to tolerate delay
104. Concerned about physical discomfort or physical danger
105. Seeks verbal reassurance
106. Hesitant in relating to adult
107. Hesitant in relating to child
108. Hesitant to try things on his Jwn
109. Unusually good physical coordination
110. Poor physical coordination
lll. Restlessness
__lé Easily frustrated or threatened by adults
113. Easily frustrated or threatened by other children
114. Recovers quickly from frustration or threat
___lly. Hesponse to frustration or threat: becomes stubborn
lle. Response to frustration or threat: becomes fearful
1l?. Fesponse to frustration or threat: cries
119. Response to frustration or threat: becomes dejected
$\qquad$ 11y. Hesponse to frustration or threat: 120. Response to frustration or threat: 121. Response to frustration or threat: 122. Hesponse to frustration or threat: 123. Response to frustration or threat:124. Response to frustration or threat: 12;. Response to frustration or threat: 12c. Fesponse to frustration or threat: 12i. fiesponse to frustration or threat:
becomes defiant, rebcllious
increased quietness
increased activity that seems aimless
seeks comfort from adult
seeks comfort from other chiid
retaliates against person who caused frustration ignores the frustration or threat
effectively defends self
becomes angry

BIPOLAR SCALES						
$l$	2	3	4	5	6	7
Extremely	Considerably	Slightly	X No More	Slightly	Considerably	Extremely
$X$	$X$	More X	Than $Y$	$Y$	$Y$	$Y$



## APPENDIX 3

Manual of Scale Definitions and Examples

Walter Emmerich
and
Gita Wilder

January 20, 1969

Atiribute:

Definition:
Examples:

1. Seeks physical affection from adult
2. Seeks physical affection from other child Actively seeks physical affection from another.
(a) Child hangs onto teacner.
(b) Child goes to teacher and clearly wants to be picked up or hugged.
(c) Child seeks to hold teacher's hand.
(d) Target child hangs onto another child.

Qualifications: Merely being receptive to affection initiated by other is not included here.

At tribute:

Definition:
Examples:
3. Seeks help or guidance from adult
4. Seeks help or guidance from other child

Seeks help, guidance, or assistance from other.
(a) Asks teacher to get play materials off high shelf.
(b) Seeks teacher's help in protecting self from other child's aggression.
(c) Asks another child what he should do next.

Qualifications: Merely accepting help initiated by other is not included here.

Attribute:

Definition:
Fxamples:
5. Seeks physical proximity of adult
6. Seeks physical proximity of other child

Active attempt to be near another child or teacher.
(a) Target child follows another child from activity to activity.
(b) Stays near teacher, following her when she moves.
(c) "I went to sit next to Eric."

Qualifications:

Attribute: $\quad$ 7. Seeks attention from adult through positive bid
8. Seeks attention from other child through positive bid

Definition: Active attention-seeking expressed in a positive manner. Attempt is to attract the attention of other toward self, possession, product, or act.

Examples:
(a) "Look at what I made, teacher."
(b) Shows something to other child, and expects a response.
(c) "Watch me, teacher."

Qualifications: Unsuccessful as well as successful bids for attention are rated.

Attribute:

Definition:
Examples:
9. Seeks attention from adult through deliberate negative bid
10. Seeks attention from other child through deliberate negative bic

Acts negatively to draw attention of other to self.
(a) Deliberately mus tricycle into a group to gain their attention.
(b) Child stamps feet loudly during a time of relative quiet in classroom.
(c) Child repeatedly does something he knows annoys other.

Qualifications: Negative attention-seeking is likely tr, result in scolding, censure, or discipline from another, but a rating is made even when the other does not respond, or responds positively to the child.

Attribute: $\quad$ 11. Seeks attention from adult through weak bid
12. Seeks attention from other child through weak bid

Definition: Mild or incomplete attempts to secure the attention of other. These can be positive, negative, or neutral bids. These attempts will often be unsuccessful in drawing attention because they are too weak.

## Examples:

(a) Child holds picture up, and waits to be noticed by teacher or other child.
(b) Child's attention-seeking comment is made too softly to be noticed by teacher, and no attempt is made to make a stronger bid.
(c) A negative attention-seeking bid is started but stopped before it is carried out to completion.

Qualifications:

## Attribute:

Definition:

Examples:

Qualifications:
13. Seeks praise or approval from adult
14. Seeks praise or approval from other child

Child actively seeks indication that other likes him, his possession, his product, or his act.
(a) Child asks, "Do you like this design?", pointing to a block design he has just made.
(b) Child makes a special effort to do something that other has indicated or implied will receive approva..
(c) Child asks another child, "Do you like this picture?", indicating a picture he has just made.

More than mere attention of the other is sought. Make this rating only if praise, approval, or expression of liking or admiration is clearly sought.

Attribute: $\quad 15$. Seeks evaluation from adult
16. Seeks evaluation from other child

Definition: Child seeks an evaluation of self, possession, product, or act in relation to a standard.

Examples:
(a) Child shows painting to teacher and asks, "Is this right?"
(b) Child trying puzzle asks teacher, "Is that the way it goes?"
(c) Child shows painting to another child and says, "Is this pretty?"

Qualifications: More than attention or approval is sought. Make this rating only if the child wants the other to a.pply a standard of evaluation. One sign of this behavior is that the cinild seems receptive to criticism.

Attribute:
Definition:

Examples:
17. Seeks or makes a comparative evaluation

Child seeks or makes a comparative judgment about himself, possession, product, or act. He may compare himself with another, compare two others, or compare his own earlier performance with a more recent performance.
(a) "Is my tower taller than Craig's?"
(b) "I'm stronger today."
(c) "Patricia is prettier than Louise."

Qualifications:

Attribute: $\quad$ 18. Demanding of adult
19. Demanding of other child

Definition: Child insists that other meet his request.
Examples:
(a) Shild insists loudly and repeatedly that teacher meet his request.
(b) Child asks teacher for special privileges.
(c) Target child orders another child to do something that benefits target child.

Qualifications:

Attribute:

Definition:

Examples:
20. Tries to get adult to do what self is expected to do.
21. Tries to get other child to do what self is expected to do.

When other suggests or requests something of target child, he tries to get other to carry out the suggestion.
(a) Told by teacher to put doll carriage in doll corner, target child tells teacher to do it.
(b) Target child asks another child to put away crayons that target child has been using.
(c) When asked by the teacher to put away blocks she has been using, target child says, "John took them out."

Attribute:
Definition:

Examples:
22. Exhibits helplessness

Child is passive or ineffective in making needs known to other. Child's goal may be to be cared for, comforted, helped, or given attention, but he makes few or ineffective effor $t s$ to communicate these needs.
(a) Child stands in front of activity shelf for some time without choosing activity or making desire known to teacher.
(b) Child seems unable to start an activity suggested by teacher.
(c) Child seems thwarted in some activity, but neither tries to overcome difficulty by self nor seeks other's help.

Quelifications:

Attribute:

Definition:

## Examples:

23. Rejects positive bid from adult
24. Rejects positive bid from other child

Active rejection of positive attention or help from another.
(a) Turns away from teacher who puts arm around child and tries to say something to child.
(b) Child refuses assistance of teacher.
(c) Crying child rejects comforting attempts by other child.

Qualifications:

Attribute: $\quad 25$. Seeks adult's permission to do something 26. Seeks permission of other child to do something

Definition: Child asks teacher or other child for permission to do something or to engage in activity.

## Extinples:

(a) "Can I point now?"
(b) Child asks teacher if he can take out the blocks.
(c) "Is it my turn now to throw the ball?"
(d) Child asks another child if he can use one of his blocks.

Qualifications:

Attribute:

Definition:

Examples:

Qualifications: What is "routine" may vary among classrooms. This rating applies only when a routine procedure or request is implied.
Attribute: $\quad 29$. Rejects reasonable request of adult
30. Rejects reasonable request of other child

Definition: Child refuses to act in accordance with reasonable request made by teacher or other child.

Examples:
(a) Asked by teacher to return crayons to the shelf, target child says "No".
(b) Asked by teacher to stop painting and wash his hands, target child continues to paint.
(c) Asked by teacher to move his wagon away from the direction of the children, target child moves wagon towards the childrer.
(d) Asked by another child to move out of the way, target child stays where he is.

## Qualifications:

## Attribute:

Definition:

Examples:
31. Engages in complementary behavior

Child coordinates his own activity to supplement and facilitate a common activity shared by one or more others. Genuinely cooperative activity.
(a) Target child builds one part of block structure while another child builds other part.
(b) Several children (including target child) participate in "playing house" or other dramatic games in which each child plays a different role.
(c) Coordination of activity occurs, such as in seemsawing, pushing and receiving a ball, etc.

Qualifications:

Attribute: $\quad$ 32. Engages in parallel activity
Definition: Child engages in same activity as other who is nearby, but their activity is independent, with no mutual coordination.

Examples:
(a) Terget child builds blocks by himself, with another child using blocks nearby.
(b) Child rides a tricycle in tandem with other.
(c) Child plays with dolls, but no effort is made to coordinate roie playing with other children who also are playing with dells.

Qualifications:

Attribute:
Definition:

Examples:
33. Exhibits interest in or concern for otner in distress

When another child exhibits distress of scme sort, target child shows interest, concern, or sympethy.
(a) Child looks at crying child.
(b) Child approaches a crying child and asks, "What's the matter?"
(c) Child approaches a crying child and offers him a toy.

Attribute: 34 . Praises or expresses approval toward adult
35. Praises or expresses approval toward other child

Definition: Child expresses praise or approval of other, either verbally or through gestures.

Examples: (a) "You're a good boy, Eric."
(b) "Jane made'a nice road."
(c) Child pats other on back to indicate approval.

Qualifications:

Attribute:
36. Expresses criticism of adult
37. Expresses criticism of other child

Definition: Child critically eveluates other. The criticism is more selfprotective or constructive than aggressive.

## Examples:

(a) "You should use the green paint in your picture."
(b) "Don't run into me."
(c) "You're not supposed to do that."

Qualifications:

Attribute: $\quad 38$. Reciprocates with adult
39. Reciprocates with other child

Definition: An exchange of favors with another.

## Examples:

(a) Child pulls another in wagon after other pulls target child in wagon.
(b) "If you help me pick up blocks, I'll help you put away dishes."
(c) Child helps other button smock after other has helped target child.

Qualifications:

Attribute:
40. Tries to "make up" with adult
41. Tries to "make up" with other child

Definition: Child attempts to "make up" with other after behaving in disapproved manner.

## Examples:

(a) Child bumps table, knocking another child's puzzle to floor. Target child then helps other child pick up pieces.
(b) Child refuses to meet teacher's request. Minutes later, he makes a special efiort to please teacher.
(c) Child tries to comfort another whom he has made cry.

Qualifications: The rater must see both the initially disapproved behavior and the "make up" behavior.

Attribute: $\quad$ 42. Friendiy toward adult
43. Friendly toward other child

Definition: Afillative, mutually affectionate, facilitating behavior.
Examples: (a) Two children play together, with exchanges of positive communications and feelings.
(b) Target child makes an outgoing gesture to another by smiling or by saying, "Let's play with the beads."
(c) Child says to other: "You can play with me."

Qualifications: Unlike nurturance, for which benefit of other is primary concern, friendly behavior is affiliative.

Attribute:
44. Nurturant toward adult
45. Nurturant toward ocher child

Definition: Spontaneous efforts to help, give to, or reassure another.
Examples:
(a) Child does something for teacher that is spontaneous and not ordinarily expected.
(b) Child spontaneously gives object to other child.
(c) Child helps other child do something.

## Qualifications:

Attribute:	46. Exhibits leadership
Definition:	A positive attempt to influence or control the behavior of
another.	
Examples:	(a) Child initiates a game of ball by throwing ball to another      child.
(b) Child says, "Let's play house. You be the father and I'll	
be the baby."	

Qualifications:

Attribute: $\quad$ 47. Behaves competitively
Definition: Attempts to "outdo" another.
Examples: (a) Child rides tricycle faster in response to being passed by another child.
(b) Child tries to build block tower higher than another child's.
(c) Competes for teacher's attention.

Qualifications: Competitiveness for resources should be rated as "posses* siveness" rather than "competitiveness."

Attribute: $\quad$ 48. Seeks leadership of adult 49. Seeks leadership of other child

Definition: Actively seeks leadership from other.
Examples:
(a) Asks teacher to help him find a new activity.
(b) Follows other child and does what other child does or suggests.
(c)
ralifications:

## Definition:

Examples:
(a)
(b)
(c)

Qualifications:

Attribute:
51. Engages in gross motor activity

Definition:

Examples: (a) Plays with large objects, such as large blocks, trucks.
(b) Engages in activities requiring physical strength, such as pulling heavy objects.
(c) Runs hard.

Gualifications:

Attribute:

Definition:

Examples:
(a)
(b)
(c)

Qualifications:

Attribute: 53. Engages in cognitive activity
Definition: Includes working or playing with numbers, letters, words; "reading a book"; writing one's name; exploring nature; talking about an experience or asking questions for the purpose of better understanding experience.

Examples:
(a)
(b)
(c)

## Qualifications:

Attribute: $\quad$ 54. Engages in fantasy activity
Definition: Engages in "make believe" behavior.
Examples:
(a) Plays role of parent in doll play.
(b) Dresses up and/or acts like an animal.
(c) "Look, I'm Batman."

Qualifications:

Attribute:
55. Engages in artistic activity

Definition: Use of expressive media, such as crayons, finger or brush painting, work with clay or paper mache, musical instruments, ete.

Examples:
(a)
(b)
(c)

Qualifications:

Attribute: 5 . Concerned with satisfaction of physical need
Definition: Child's attention alrected toward satisfaction of physical need.
Examples:
(a) Seeks food during periods other than snack time.
(b) Excessively tired; falls asleep.
(c) Sucks thumb.

Qualifications:

Attribute:
57. Takes initiative in carrying out own activity

Definition:
Child knows what he wants to do; a "self-starter".

## Examples:

(a) A child works on several puzzles, returning each when he is finished, and choosing another.
(b) A child becomes engaged in a series of activities without any apparent direction from the teacher.
(c) After completing an activity, child easily finds another activity.

Qualifications:
ittribute:

Definition:

Exampies:
(a)
(b)
(c)

Quailfications: Child need not be successful with task in order to receive this rating.

Attribute:
Definition:

Example :
59. Attempts to overcome obstacle by himself

When in the course of an activity the child faces some obstacle, he tries to overcome the obstacle by himself. An "obstacle" here refers to something blocking the activity that is not caused deliberately by another.
(a) When a tool is missing that he needs, he tries to find it without asking or disrupting others.
(b) When a piece of a puzzle is missing, the child searches for it.
(c) When a piece of furniture is in his way, the child moves the furniture.

Qualifications:

Attributき:
Definition:

Examples:

Qualifications:
60. Exhibits persistence

Sticks to a task or course of action despite distractions or interference.
(a) Child works at a puzzle despite interesting distractions. that might command his attention or interest.
(b) Child returns to building with blocks repeatedly after interruptions.
(c) Child returns to painting a picture after noticing another interesting activity occurring next to him.

In order to rate here, a distraction or interference must occur with subsequent pers'stence by child.

Attribute: 61. Completes activity by himself
Definition: Once a task is begun, the child carries it out to completion without requiring encouragement or help from other.

Examples:
(a) Child works on a puzzle and completes the puzzle without seeking help.
(b) At the teacher's suggestion, the child starts to paint a picture. He works at the picture without seeking further encouragement from the teacher.
(c)

Qualifications:

Attribute:
Definition:

Examples:
62. Gets intrinsic satisfaction from activity or task

Child appears to enjoy activity or task for its own sake. Signs of intrinsic satisfaction are (a) wholehearted involvement and concentration on activity; (b) child expresses positive feelings while engaging in activity.
(a) Child is completely absorbed in painting a picture.
(b) Girl sits in corner rocking a doll, singing to self.
(c) Boy kicks ball along whistling:

Qualifications:

Attribute:
Definition:

## Examples:

Child expresses positive self regard.
(a) "I'm a good boy."
(b) "I'm strong."
(c) "I look pretty today."

Qualifications: This rating is an affirmstion of self regard, not an attempt to elicit praise or approvel from other.

Attribute: ó 4. Threatens to act aggressively toward adult
65. Threatens to act aggressively toward other child

Definition: Child threatens other with physical aggression. May be a verbal or gestural threat.

Examples:
(a) "Stop doing that or I'll hit you."
(b) Child shakes $f$ ist at other, but stops short of physical contact.
(c)

Qualifications:

Attribute:

Definition:
Examples:
66. Possessive

Possessive attitude toward an object or resource.
(a) Child is unwilling to share or give up something in his possession.
(b) Child attempts forcefully to secure an object that is in another's possession.
(c) Child protects own block structure from all comers.

Qualifications:
67. Verbally aggressive toward adult
68. Verbally aggressive toward other child

Difinition: A remark that expresses hostility, derogation, dislike, or rejection of other.

Examples:
(a) "You're'stupid."
(b) "No. I won't play with you. I don't like you."
(c) "Your picture is ugly."

Qualifications:

Attribute: $\quad$ 69. Bosses adult
70. Bosses other child

Definition: A negative (verbal) attempt to influence or control other.
Examples:
(a) Child says to another, "You can't swing now; I have to go first."
(b) Child says to anotiner, "If you won't be the baby, you can't play house with me."
(c) Child says to teacher, "Take these dishes back to the sink right now."

## Qualifications:

Attribute:

Definition:

Examples:
71. Physically aggressive toward adult
72. Physically aggressive toward other child

Qualificatzons:
Child actually makes physical contact with other in expressing aggression. Includes hitting, wrestling, kicking, pinching, pushing, biting, spitting, throwing object at another.
(a)
(b)
(c)

## Qualicatzons

Attribute:
Definition:

Examples:
73. Deliberately aggressive against property.

Aggression directed toward objects and property. Includes disruptive throwing of objects, deliberate breaking of things, tearing up things, destroying products that other children have made or are working on. .
(a)
(b)
(c)

Qualifications:

Attribute: $\quad$ 74. Expresses negative feeling about self, possession, or own product

Definition: A negative, self-depreciating remark.
Examples:
(a) "I can't do it."
(b) "Your dress is prettier than mine."
(c) "My painting is no good."

## Qualifications:

Attribute:
75. Exhibits visual curiosity

Definition:
Examples: (a) Child looks at ongoing activities in classroom.
(b) Child looks at toys and gaines on a shelf.
(c) Child is attentive to a new or unusual event in classroom.

Visual curiosity is directed rather than aimless. It need not be accompanied by action, although a child may move from place to place in order to get a clearer view of object of attention.

Attribute:
Definition:

Examples:
76. Exhibits active curiosity

Active interest in a variety of ongoing activities or objects, including manual or verbal exploration.
(a) Child moves around room and "tries out" a variety of activities.
(b) Child goes to toy shelf and manipulates different toys.
(c) Child asks many questions on a topic.

Qualifications:

Attribute: $\quad$ 77. Seeks information from adult
78. Seeks information from other child

Definition: Asiss a question of another child for the purpose of gaining information.

Examples:
(a) To another child: "How did you make that house?"
(b) To the teacher: "When will it be Christmas?"
(c) To another child: "How old are you?"

Qualifications:

Attribute:

Definition:

Examples:

Qualifications:
79. Responsive to teaching by adult
80. Responsive to teaching by other child

Child attempts to follow another's instructions, to master a skill being taught, or to modify a mistake pointed out by another.
(a) Child carries out teacher's instructions on how to hold paint brush.
(b) Child practices making a circle with crayon after another child has shown him how.
(c) Teacher shows child how a piece of puzzle is put in the wrong place, and child searches for correct place.

Rate here the child's response to teaching of "subject matter" rather than classrocm roubines.

Attribute: | 81. Imitates behavior of adult |
| :--- |
| 82. Imitates behavior of other child |

Definition: The child clearly tries to imitate or copy adult's behavior By "imitation" is meant behavior that is clearly (a) stimulated by the behavior of the adult, (b) very similar to the behavior of the adult, and (c) occurs soon after the behavior of the edult.

Examples:
(a) Child imitates clapping of teacher in geme or song.
(b) Child copies a design made by the teacher in a demonstration of finger painting.
(c) Cther child says, "I'm a horse." Target child says, "I'm e horse."

Qualifications: Merely following instructions does not qualify as imitation unless these instructions cell for imitation of the instructor's behavior.

Attribute: 83. Instructs or demonstrates
Definition: The child tells or shows another how to do something.

## Examples:

(a) Child shows other how to do puzzle.
(b) "This is how you button your coat" (demonstrates).
(c) Child shows another child where the peg board is.

Qualifications:

Attribute:

Definition:
Examples:
$\checkmark!$
84. Attempts to communicate verbally to adult
85. Attempts to communicate verbelly to other child

Uses words and sentences in an effort to communicate with other.
(a)
(b)
(c)

Qualificetions:

Attribute:

Definition:
Examples:
86. Communicates meaningful complex idea to other child
87. Communicates meaningful complex idea to eiult

Child communicates a train of thought, or a complicated idea.
(a) Reports an experience at home in some detail.
(b) Tries to tell other that blocks must be put in a certain sequence in order to build tower.
(c) Engages in fantasy play which incorporates a variety of different roles.

Qualifications: The train of thought or complicated idea may refer to scmething real or fantasied, but it should have some coherence.

## Attribute:

Definition:

Examples:
88. Verbelly loud

Makes sounds vocally and perhaps noisily to imitate some sound in nature or to express internal state.
(a) Shouts "zoom" as he runs around room.
(b) Pretends to shoot a gun, saying, "bang, bang."
(c) Shouts something to get other's attention.

Qualifications: Whether child vocalizes words or sounds, this rating refers to vocalization in the service of expression rather than communication.

## Attribute:

89. Maliks to self

Definition: Child delivers monologue or addresses remarks to non-human objects.

Examples:
(a) "Here's a green wheel and here's another green wheel. I think I'll take another one."
(b) Child says "Get off me" to a piece of string that is clinging to his fingers.
(c) Child asks and answers his own questions. "What color shail I make this house? Red."

Qualirications: In order to make this rating, it should be clear that the child is attempting to communicate to himself rather than to other.

Attribute: $\quad$ 90. Difficult to understand
Definition: Child has difficulty making proper sounds for words, leading to difficulty in understanding.

Examples:
(a)
(b)
(c)

Qualifications: Do not give this rating if child's speech is clear and rater doesn't undesstand child's vocabulary.

Attribute:
Definition: An activity or task fails to sustain the child's attention, interest, and effort.

## Examples:

Qualifications:

Attribute:

Definition:

Examples:
92. Inattentive when adult communicates to him
93. Inattentive when other child communicates to him

Does not sustain attention toward other who is ettempting to communicate with target child.
(a) Marget child doesn't seem to listen when teacher instructs or communicates :ith him.
(b) Attention wanders when teacher is instructing a group of which target child is a member.
(c) Doesn't seem to listen to another child's attempt to communicate with him.

Attribute: 94. Incomplete communicetive act
Definition: Does not bring full attention to bear on other when communicating to other.

Examples:
(a) Child says something presumably directed to teacher, but does not look at teacher while he is saying it:
(b) Answers teacher's question so softly that teacher cannot hear.
(c) Tries to communicate with other without first capturing other's attention.

Qualifications:

Attribute:
Definition:

## Examples:

95. Exhibits goal-directed activity

Purposeful activity directed toward specific goal.
(a) Begins and completes a drawing.
(b) Makes a structure out of building blocks.
(c) Attempts to put beads on a string.

Qualifications:

Attribute:
Definition:
96. Shows planning in pursuing activity

Child approaches activity or/task in a careful, orderiy, thoughtful manner indicative of planning. Evidence for planning may be seen in
(a) preparatory behavior which makes a task easier, such as putting all pieces of a puzzle face up before putting in the pieces, and
(b) doing things in an orderiy sequence.

Attribute: 97. Flexible in substituting goal
Definition: When a goal is blocked, child readily seeks or accepts a substitute.

Examples:
(a) Child approaching tricycle gets there after another chilid has taken it. Target child turns to another activity.
(b) Child accepts an alternative task in response to teacher's suggestion.
(c)

Qualifications:

Attribute:
Definition:

Examples:
98. Corrects or modifies performance to meet own standard

Child modifies his behavior, apparently in accordance with his own standard, and without external pressure to do so.
(a) After examining his block structure from several angles, child rearranges several blocks.
(b) Saying, "This is a goof," child throws away drawing he has made and starts another.
(c) Child tries several doll dresses on a doll before deciding which she is satisfied with.

Qualifications:

Attribute:
Definition:

Examples:
99. Products or activities have common theme

Despite variation in child's specific activities, his actions and/or products contain a common theme or idea.
(a) Child makes engine sounds ("vroom") in moving crayons, truck, and his own body.
(b) Child paints several paintings that differ, but have similar content or form.
(c) Child plays "mother" in a variety of contexts.

## Qualifications:

Attribute: 100. Perseverates on activity or task
Definition:

Examples:
Repeated performance of an activity or task beyond the point where the behavior appears to serve any goal beyond repetition itself.
(a) Child hamers aimlessly on a peg that is already in the hole as far as it can go.
(b) Stacks and unstacks dishes over and over again.
(c) Paces beck and forth.

Qualifications:

Attribute:
Definition:

Examples:
101. Perseverates verbally

Repeated performance of word or phrase or sentence beyond the point where the behavior appears to serve any goal beyond repetition itself.
(a) Repeats phrase over and over again, without any effort to communicate with other.
(b) Sings part of song over and over again to self.
(c)

Qualifications:

Attribute:
Definition:

Examples:
(a)
(b)
(c)

Qualifications:

Attribute: 103. Unable to tolerate delay

Definition: Impatience in getting or doing something.
Examples:
(a) Told that he must wait in line and take his turn, child pushes in front of other.
(b) Impulsively does something too quickly to be successful.
(c) Tries to skip steps in doing an activity that calls for an orderly sequence.

Qualifications:

Attribute: $\quad$ 104. Concerned about physical discomfort or physical danger
Definition: Child exhibits concern, fear, or anxiety with regard to physical comfort, pain, or danger.

Examples:
(a) Child is concerned about and "favors" a past injury.
(b) Child expresses concern about his physical safety.
(c) Child complains about a physical discomfort.

Qualifications: The child's concern may be either realistic oi unrealistic, and should be rated here in either case.

## Attribute:

Definition: . Seeks reassuring remark or comment from other.
Examples:

Qualifications:
(a) "Do you like my picture?"
(b) "Am I doing this right?"
(c) Child starts an activity and hesitates, looking at the teacher as if to seek an expression of reassurance.
105. Seeks verbal reassurance

Attribute: $\quad 106$. Hesicant in relating to adult
107. Hesitant in relating to child

Definition: A tendency to hesitate or to avoid relating to an adult,or to a child or group of children. Hesitancy may occur with shyness or fear, or the child may vacillate between approaching and avoiding the adult.

Examples:
(a)
(b)
(c)

## Qualifications:

Attribute:
Definition:

Examples:
(a)
(b)
(c)

Qualifications:

Attribuite:
Definition:

Examples:
108. Hesitant to try things on his own

A tendency to hesitate or to avoid doing things by himseif. Hesitancy may occur with excessive cautiousness and fear, or the child may vacillate between approaching and avoiding an activity or task.
109. Unusually good physical coordination

Child is unusually well coordinated in use of large mus $=$ les, in eye-hend coowination, sence of bajance, or thythun.
(a)
(b)
(c)

## Qualiffacations:

Attribute:
Definition:

Examples:
110. Poor physical coordination

Child exhibits difficulty in physical coordination, either in use of large muscles or in eye-hand coordination.
(a)
(b)
(c)

## Qualifications:

Attribute:
11.. Restlessness

Definition: Does not sit still, fidgets, paces.

## Examples: <br> (a)

(b)
(c)

## Qualifications:

Attribute:

Definition:

Examples:
112. Easily frustrated or threatened by adults
113. Easily frustrated or threatened by other children

Frustrates easily in response to actual or potential injury, blockage of activity, thwerting by other, or social chreat initiated by another.
(a)
(b)
(c)

Qualifications:

Attribute: $\quad$ 114. Recovers quickly from frustration or threat
Definition: Response to frustration is neither prolonged nor severe. Frustration includes actual or potential injury, blockage of activity, thwarting by other, or social threat initiated by other.

## Examples:

(a)
(b)
(c)

Qualifications: Quickness of recovery from frustration should be rated independently of how easily the child is frustrated.

Attribute: $\quad 115-127$. Response to frustration or threat
Definition: Frustration includes actual or potential injury, blorkage of activity, thwarting by other, or social threat initiated by other.

Examples:
(a)
(b)
(c)

Qualifications: Make a rating for all of the following kirds of response to frustration:
115. Becomes stubborn
116. Becomes fearful
117. Cries
118. Becomes dejected
119. Becomes defiant, rebellious
120. Increased quietness
121. Increased activity that seems aimless
122. Seeks comfort from adult
123. Seeks comfort from other child
124. Petaliates agsinst person who caused frustration
125. Ignores the frustration or threat
126. Effectively defends self
127. Becomes angry

APPENDIX C

Fater Recruitment Forms

3,4.6 144

## FATE: bACKiRUMD HFORMATION

(: $\because$ Le lilled in by the local coordimavir)
rincor site:
_ Lee Count:
Portlarid
——St. Louis
—— Irenton

Nance $\qquad$
$\operatorname{Sin} x$ $\qquad$ Age $\qquad$ Marital status: $S$ $\qquad$ Separated/Divorced $\qquad$
mirnest grade attained $\qquad$
AEes if children (if any) $\qquad$
Eins :"ur caring for children during work periods $\qquad$
$\qquad$
$\qquad$
Cenerai work experience $\qquad$
$\qquad$
$\qquad$
recial equration, training or experience with young children $\qquad$
$\qquad$
$\qquad$
$\qquad$
OEM redevan irsomation $\qquad$
$\qquad$
$\qquad$
$\qquad$
(To be filled in by the local coordinator)
Check site:
$\qquad$ Lee County
$\qquad$ Portland
St. Louis
$\qquad$ Trenton

Name of candidate rated $\qquad$

Rate the candidate on the characteristics listed below, using the following scale:

1. Very low or very weak
2. Moderately low
3. Moderate
4. Moderately high
5. Very high or very strong
_- 1. Conscientious motivation to carry out rating task
$\qquad$ 2. Ability to arrange time to carry out rating task
$\qquad$ 3. Experience with young children
$\qquad$ 4. Potential rapport with teachers and school administrators
$\qquad$ 5. Verbal skills
$\qquad$ 5. Ability to work independently

Fank order this candidate in relation to ali other candidates:
This sandidate is ranked $\qquad$ out of a total of $\qquad$ candidates.

Is the candidate available from February 1 through May 16?
$\qquad$ Yes
$\qquad$ No (Explain)

Name $\qquad$

## Child Behavior Examples

Some of the ways that children behave are listed below. Drawing on your own experience, write several examples of each behavior as it might occur in a young child. (Please take no longer than twenty minutes.)

1. Rebellious behavior:
2. Compliant behavior:
3. Dependent behavior:
4. Independent behavior:
5. Academicaliy motivated behavior:
6. Aggresíive behavior:
7. Affectionate behavior:
8. Rigid behavior:
9. Flexible behavior:
10. Purposeful behavior:

## Observer Ratings of Children

## TRAINING AND PROCEDURE MANUAL

October 1969 - June 1970

Walter Emmerich
and

Gita Wilder
I. Overview of Rating Task for Year

## A. Purpose

The basic purpose of the ratings is to assess child behaviors in the "natural" setting of the classroom throughout the first year of schoos in Head Start.

## B. Specific Aims

The basic aims of the ratings are listed below. These basic aims represent firm commitments which we must make every effort to meet. These aims will not change during the year, although you should be prepared for possible revisions in procedure, and we welcome your suggestions on how our procedures might be improved to better achieve specific aims.

1. Every chila designated an eligible child, in the terms of each site, will be observed and rated. There will $b=$ between 15 and 80 children per classroom.
2. The number of designated classruoms will vary among sites, with a maximum of about l5. This means each site will be responsible for ratings on as many as 225 children, but should also be prepared at any time for revised estimates of exact numbers.
3. Ratings are to be made immediately after the otserver has watched the designated child.
4. The observation period for each set of ratings on a child will be 30 minutes of continual observation.
5. All observations :pon which ratings are based are to be made during "free play" periods in the classroom. Observations are not to be made (l) during périods such as naptime, snacktime, etc.; (2) during periods when the teacher is inst:ucting the class as a crour; (3) outdoors.
6. Every set of ratings on a child will be made by both members of a paired observer team.
7. These pairs will observe the child at the same time, but ratirgs will be made and recoried independently, i.e., without prior comrunication about the child's behavior.
8. However, immediately after the independent ratings have been recorded (step 7), the paired rater team will discuss all scale disagreements and arrive at agreements on these scales for the child. These consensus ratings also will be recorded. T'aken together, items 7 and 8 thus result in three sets of ratings: (1) first rater's independent ratings; (2) second rater's independent ratings; (3) consensus ratings. All three of these sets of ratings are preserved. * Ratings made in step 7 should not be changed after the consensus ratings are made.
9. The above procedures will all be carried out twice on each child, with an interval of 7-14 days between paired ratings. Different pairs of raters will make the first and second sets of ratings on each child.
$\therefore$ necruiting Trainees
"he revised training periods are as follows:
Portland: Sept. 29 or 30-October 15. St. Louis: November 10-25. Trenton: October 6-17.
$\therefore 2$. Liring up Practice Classrooms for Training
A. Line up practice classrooms for the training period noted above. Since there is a possibility that training mav be extended, try to line up classrooms for an extra week beyond this period.

玉. In eacn site, four classrooms will be needed in the morning, and four in the afternoon. Teachers should be informed that classroom observers will not be present continually, and not necessarily each day.
C. These classrooms cannot be Head Start classes nor other preschool classes in which any tested subjects are enrolled.
5. We suggest Head Start classrooms which are not part of the study, day-care centers, and private nursery schools. Children should be from 3-5 years of age, preferably from dis idvantaged backgrounds.

ت. For practjce purposes, it is desirable but not essential that observations be made during free play. Ask teachers when they would prefer observers to be present. Note that times when children arrive and depart are poor times for observing (either because of the teacher's request or when routines typically are carried out).
3. Inform teachers that no more than two observers will be in the classroom at any one time, but that different pairs of observers will appear at different times.
I. You might also want to inform teachers that our observers will not participate in the Head Start program in any way (e.g., to help manage children or to share a meal). Also, teachers should not expect observers to report to them any information based upon observations or ratings in the classroom.
H. In addition to providing space for training discussions, as covered in a separate communication, the following supplies should be available: (1) a dozen clip.oards; (2) several dozen pads of lined paper; (3) several dozen pens. Thirty manuals and 2,000 copies of the rating forms have been sent to your site.
IV. Training Procedures
A. Purposes of Training

1. To familiarize raters with the scales and their definitions, as provided in the Manual.
2. To help raters develop techniques of observing and taking notes in the classroom.
3. To familiarize raters with the classrooms and children.
4. To give raters practice with the rating procedure.
5. To discuss both individually and in groups the practice ratings
in order to help trainees learn the scale definitions thoroughiy.
6. To provide training in the observer's orientation toward teachers and children (in the role of observer).
7. To evaluate continuously the progress of training for each trainee, both to provide individualized instruction and to help in final selection among trainees.
8. To achieve a high degree of agreement among trainees in ratings made on all scales.
B. Some Principles of Training
9. Rely heavily upon practice observations and group discussions of scale definitions rather than upon formal presentations of scale definitions.
10. Give specific rules of rater classroom behavior: (a) appropriate dress; (b) do not participate in classroom activities, snacks, meals, etc.; (c) no eating or drinking in class; (d) observers should nct converse in classroom or within hearing distance of classroom; (e) observe local rules on smoking.
11. Use information gained during early parts of training to determine how to pair observers: (a) When pairing early in training, vary pairings to include many combinations of raters. (b) Later in training, arrange permanent pairs of raters whom you feel will work well together and can learn from each other.
12. Emphasize the importance of establishing good relations with teachers:
(a) There should be no more than two observers in the classroom at any time. (b) Respect teachers' requests about times when observers are not welcome. (c) Raters/should not distract teachers from their job. (d) Raters should be sensitive to communicating to you any messages concernink classroom availability, special changes in schedule, etc.
?. Al , Uservation ard ratings are highly confidential. wo intorr.stion about specific eniidren shoud be given to parents, teachers, read Start officials, or other unnuthorized personnel. If in doubt,
 iirector.
13. Instruct trainees to exercise caution ir the handling of bct. blank and completed forms. Neither are tc ve distributed to unauthorized personrel.
$\because$ Ali completed forms are to be returned to you when discussion $\because$ : them has been completed.
*. Try to arrange schedules so that discussions of ratings follow soon after the ratings are made, preferably the same day.
Q. Inform trainees that they are not to observe and rate children who are relatives or children of close personal friends.
$\because$ Moaitoring of Training
i. A major goal of training is tc achieve a high level of agreement within pairs on all scales. This must be achieved before a trainee can be hired as a rater in the study.
$\therefore$ The Trainer should look over all paired protccols and act as \# "moderator" of discussions between raters on disagreements in syplications of scales.
14. For their own information, and for use by the Princeton Office, Trainers should fill out records of inter-rater agreement, using forms that will be provided.
15. A representative from the Princeton Office will spend at least one day at each site errly in the second week of training. The purposes of this visit are to (a) answer any questions that arise Uuring training; (b) check the level of inter-rater agreement on ali trainees; (c) helf make final choices among trainees for the study itself; (d) go over the procedures and a schedule for the rating study i+self.

Characteristics of a Well-Trained Observer-Rater
i. Fecords classroom observations effecively so that later ratings car be made.
2. Thoroughly understands the scale definitions and differences among scales.
3. Is able to fill out rating form with completeness, and without taking too much time (typically no longer than 30 minutes).
4. Works effectively with paired rater and other project persomel.
5. Behaves appropriately in classroom.
6. Can reach a high level of inter-rater agreement on all scales.
7. Gets places on time, and does not miss days of work. (If unable to work because of factors beyond her control, there must be evidence that the problem is not likely to recur or continue.) Keep in mind that when the study itself beins, most trainees should be at a high level of competence, and, since they will be working in pairs, any absences of one member of a pair wili place additional strain on getting the job done within our tight time schedule.
8. Does not give faise data; e.g., filiing in rulisgs without firsit observing the child, and changing the independent rating protocols after arriving at a consensus.
E. Training Schedule

We have allotted two weeks for training; and we do not plan to extend the training period beyond two weeks. However, you should attempt to get as much training accomplished as possible during the first week of training. The following is a suggested schedule for the first week.

Day I
A.M.

1. Introduce rating task for the year (do not dwell on this too long).
2. Reemphasize all job requirements (e.g., hours, being on time, etc.).
3. Clarify roles, restonsibilities of all relevant personnel, chain of command.
4. Irdicate that trainees for this task have been preselected, but this does not guarantee that all trainees will meet the task's standards by the end of the training period (two weeks).
5. Select trainees for the study according to their quality of performance within the twoweek training period.
6. Clarify our relations with schools--that we are, in effect, "guests" in the schools, and that we cannot accomplish our goals without maintaining their voluntary cooperation.
7. Introduce scales and their definitions in the Manual.

## M.

1. Each trainee observeg one child in the classroom, hut takes notes on the child's behavior for not more than 20 minutes, and is not asked to fill out forms.
2. Ask each individual to report what she saw and to discuss with the group how these observations might be rated. Start providing corrections and clarifications of the scales imediately, while still allowing most of the discussion to arise from the group. Be sure to draw out as many individuals as possible.

Day 2

## A. M.

1. Each trainee should observe a child for 30 minutes, trying to get into the classrooms as early in the morning as possible to nake these observations. She should then rate the children.
2. Discuss as many ratings with as many trainees as possible, emphasizing that they should bring up questions about the scales. Aguis, some peopie wouid ratner conceal their ighustact that learn, and such people will need to be drawn out.

Continue discussion of morning, and have trainees observe and rate a second child, following a procedure similar to that of the morning. You will find it very helpful to "cycle" groups so that some persons are observing in classrooms while others are dism cussing their observations and ratings with you.

Day 3
A.M.

Continus same procedure of Day 2.
P.M.

1. Pair raters, and divide total group into iwo groups oi three pairs each. One of these groups can observe in classrooms while the other is discussing observations and ratings at the home office with you. Pairs make simultaneous independent ratings of same child.
2. Since you will not be able to disquss with each pair simultaneously, ask them to go over all simultaneous ratings with each other, and to use the tiun with you to iron out any uisanteamenta on spccific items as well as general problems that might arise.

## Day 4

A.M.

Continue same procedure of Day 3-P.M.
P.M.

1. Continue same procedure.
2. Start to record interjudge agreements for each pair on sheets provided. Use this information to note weaknesses of pairs, and then provide them with additional training. Note: Throughout this period, explicit instructions should be given on the rules of independent observation! This is the time when trainees should accept as a matter of habit that independent observations always precede any discussion of disagreements on a particular child. Do not introduce the idea of recording consensus ratings until after the whole training period is completed and raters have been selected. Keep records of rater pair agreements for inspection by the Princeton monitor.

Day 5
A.M.

Continue the procedure of Day 4 - P.M.
P.M.

1. Continue the above.
2. Begin to formulate your opinions on which trainees will "make it," and which may be doubtful.

## Second Week

1. Throughout the first week, any questions or problems which eannot be resolved locally should be referred to the Princetun office. if in doubt, call!
2. In any case, you should call Mrs. Wilder during the fifth day, so that plans for the second week of training can be formulated. We need this information from all sites so that plans for the second week will be similar among sites.

$$
-151-
$$

## V. Uperations Phase

## A. Contacting Study Classrooms

The Technical Director and/or the Trainer should contact and/or visit all schoois in which observations will be made so as to explain the observation procedure to the teachers. In areas where the Head Start program is under centralized administration, the administrator can handle this briefing. The main points to be stressed with teachers are that the observers shoula not be made part, of the classroom activities, and that ciassroom routines should not be eltered when observers are present.
B. Instructions to Observers

Obeervers should be informed of schedules, procedures, and lines of authority. Particularly important are the following matters:
(1) Time of arrival at Field Office, and the importance of promptness.
(2) Who and where to phone in case of illness or absence (and. the deadine after which the absence will be considered unexcused). The Trainer should also know how to reach observers after hours in order to convey information about changes in schedule, etc.
(3) Who and where to call from the field if a class is not in session or a particular set, of observations cannot be made.
(4) Who to consult in case of a problem.
(a) Observers' questions concerning the Manual or a procedure should be raised with the Trainer who may need to ask the Technical Director, who may need to ask the appropriate person in the Princeton Office.
(b) Any questions concerning hours, payment, or personnel procedures should be raised with the Technical Director.
(c) Any unresolved differences which might arise between the Prainer and observer should be referred for arbitaation to the Technical Director.
C. Scheduling

1. Lists of chi:dren in all nursery schools, day-care centers, and Head Start classes in the target city shomld be provided by the Local Coordinator. The Local Coordinator should also indicate which children on the lists are eligible children, and which have been tested.

$$
-1_{i}^{\prime}-
$$

2. Personality observations axe to be made on all enumerated and eligible children in any preschool classes in the total site. By "eligible" is meant any child who meets age and residence requirements to enter first grade in designated target elementary schools. Personality observations will also be made on all classmates of eligible children in classes having 60 percent or more eligible children ( 80 percent in St. Louis).
3. Unless otherwise irformed by the Princeton Office, it should be assumed that each child is to be observed twice within a twoweek. period as indicated in section I-B-9 of this Manual. However, there may be occasions when only a single paired observation will be needed in a particular site. In such cases, the Technical Director will be informed by the Princeton Office.
4. Eligible children in nonmead Start classes (e.g., daymare centers) should be observed tiroughout the months of observation and not left uritil the end.

## D. Observation Procedures

1. Each child will be observed for 30 minutes continuously, followed immediately by ratings. In classes in which there is a limited period of free play, observers may observe two children in succession and rate them both. Trainers should not accept ratings based upon an observation time of less than 25 minutes.
2. Independent ratings are to be made and then discussed within pairs. During the discussion, consensus should be reached on all disagreemerts and entered on a third sheet. This sheet should be labelled 'consensus' at the top. Note that the sheet should include a consensus ratire on every scale, even when there was no initial disagreement on the scaie.
3. Consensus ratings are to be made on the same day that the child is observed. (a) Observers are to be instructed to create proper conditions for discussing ratings and arriving at a consensus. (b) The final consensus discussion on ary lay mast be conducted in the office with Trainer access to monitoring the discussion. (c) The Trainer wili formaily moribor one consensus discussion for each pair at least onee \& week.
4. Observations are made during free play periods only. If there is insufficient free play in a classroom, the Trainer or observer should visit the class herself to see what other activity pericds might be substituted. Subetitutions should be cleared with the Princeton Office.
5. There should ve from five to ten days between first and second observations, with four days between the two an absolite mininum, and 13 the maximum. For example, a child seen on Monday for the first time should be seen again no earlier than Friday of the same week and no later than Friday of the following week. The two observations of a given child should be scheduled on different days of the week.
6. If any child cannot be observed for a second time within the requisite 13 days, that child should be seen as soon as possible. However, if the delay is prolonged and caused by illness, closing of school, or any other unusual event, rate the child twice again later.
7. The goal per pair is an average of 16 child ratings per week. The actual number may vary from four to 20 depending on the classroom and the observers. A daily record should be maintafned of pair productivity and reasons for any extreme deviation should be inquired into.
8. In areas where there are an cdd number of observers, the pairs should be manipulated so that no one person is left unpaired for more then a week at a time.

## E. Monitoring and Record Keeping

1. It is the responsibility of the Trainer to request materials from the Princeton Office two weeks in advance of their being needed.
2. Rating sheets should be turned in to the Trainer at the end of each day. The Trainer should check them that day to see that they are properly and completely filled out. Individual rating sheets should be placed inside the consensus sheet for each child. The birth date and age of each child in months should be computed and entered on the face sheet next to the space for date of observation.
3. Interjudge agreement tallias for each paired observation should be filled out at the end of each day, together with the Daily Activity Reports fior each week.
4. Each day's protocols and tally sheets should be kept together, and sent at the ind of each week to the Princeton Office. A Master Schedule should be maintained and kept up to date with daily entries of which children were seen by which pairs of observers.
$\therefore$ The Trainer should arrange to sit in on at least one consensus discussion of every pair each week.
5. The materials sent to ETS should be sent by the Technical Director, after he or she has checked them.
6. In ccllaboration with the Technical Director, the Trainer can rearrange pairs, if necessary, to maintain good interpersonal relations among observers. From time so time, rearrangenent of pairs may be requested by the Princeton Office.
7. In the case of illness, resignation, or dismissal of any individual, the Princeton Office should be requested to indicate a plan for recruitment and training of new personnel.
8. When an individual observer has been ill for more than a week, she will need a retraining pericd o at least one day.

## APPENDIX E ${ }^{*}$

Median Interrater Reliabilities for Sites
and Observation Periods

## *Notes for Interpreting the Contents of Anpenaix.E.

1. Reliability estimates are Pearson correlations for pairs observing at least 20 chil anditmeously and independently.
2. Cell entrien are besed upon the number of paire indicated in column headings. (In some lnstances, the same juage wis a member of more than one pair.)
3. The median is reported if there was meale variability for at least one pair in the cell; if not, no nimber is reported.
4. An asteriak in the cell indicates that variability was gero for at least one pair.
5. In the column headinge, $F=$ Fall, $\mathbf{S}=$ Spring, and $C=$ Fall and Spring combined.

Appendix $E$

为
Median Interrater Reliabilities for Sites and Observation Periods


Median of Medians

	Portiand			St. Louis			Trenton			3-Site Total				
Unipolar Scale	$F(6)$	$s(3)$	C(9)	$F(5)$	$s(3)$	c(8)	F(4)	S(2)	c(6)	F(15)	$s(8)$	c(23)	Fange	(23)
1. Seeks physical affection from adult	0.92 *	0.89	0.92*	$0.95{ }^{*}$	0.91	0.91*	0.96	0.78	0.96*	0.95*	0.90		0	, 0
2. Secks physical affection from child	$1.00{ }^{*}$	$0.39{ }^{*}$	$0.81{ }^{*}$	$0.95{ }^{*}$	0.96*	$0.98{ }^{*}$	$1.00^{*}$		$1.00{ }^{*}$	$1.00{ }^{*}$	0.81*		0	
3. Seeks help or guidance from adult	0.63	0.64	0.63	0.73	0.94	0.89	0.98	, 0.69	0.96	0.83	0.76	0.73	0	. 0
4. Seeks help or guidance from child	0.95 *	0.46	$0.77^{*}$	$0.87^{*}$	0.85*	0.87	$1.00^{*}$	0.83	$1.00{ }^{*}$	$0.95{ }^{*}$	0.70	0.87		*
5. Seeks physical proximity of adult	0.78	0.62	0.76	$0.98{ }^{*}$	0.85	0.95*	1.00	0.90	0.99	0.91	0.85	0.83		
6. Beeks physical proximity of child	0.64	0.52	0.54	0.70	$0.95^{*}$	$0.90{ }^{*}$	0.96	0.69	0.95	0.84	0.64	0.72		${ }^{*}$
7. Seeks attention from adult-mps.	0.74	0.60	0.64	0.90	0.77	0.90	0.97	0.84	0.94	0.89	0.76	0.85	0.	8
8. Seeiks attention from child--pos. bid	0.79	0.58	0.61	0.81	0.75	0.80	0.94	0.65	0.90	0.85	0.65			,
9. Seeks attn. from adult-melib.neg.bid	$0.72^{*}$	0.27	$0.50{ }^{*}$	$1.00{ }^{*}$	$1.0{ }^{*}$	$1.00^{*}$	1.00	0.22	0.92	$1.00^{*}$	$0.37$		$0.0$	
10. Seeks attn. fr.child-melib. neg. bid	0.78	0.46	0.75	0.86	0.94*	$0.82{ }^{*}$	$1.00{ }^{*}$	0.32	$1.00{ }^{*}$	$0.82^{*}$	$0.58^{*}$	0.7	.	. $00{ }^{*}$
11. Seeks attn. from adult-meak bid	0.72	* 0.43	0.57	0.85	0.77	0.78	1.00	0.82	1.00	0.85	0.70	0.77	0.1	. 00
12. Seeks attn. from child-wreak	0.73	0.21	0.61	$0.80{ }^{*}$	0.72	$0.72{ }^{*}$	$0.914^{*}$	0.78	0.94*	$0.85{ }^{*}$	0.67			. 00
13. Secks praise or approval from adult	0.84*	0.25	0.64	0.75	0.86	$0.85^{*}$	0.99	0.79	0.95	0.93	0.77	$0.85^{*}$	$0.2$	$00^{*}$
14. Seeiks praise or approval from child	0	$0{ }^{*}$	$0.70^{*}$	0.75 *	0.85*	0.85*	$0.85{ }^{*}$	0.78	0.81*	$0.89 *$	0.84*		$0.0$	.00*******
15. Seeks evaluation from adult	0.85	. $0^{*}$	$0.42^{*}$	0.97	$1.00^{*}$	$1.00^{*}$	$1.00{ }^{*}$	0.45 *	$0.73 *$	$0.95{ }^{*}$	0.45*		0.0	. $00^{*}$
16. Seeks evaluation from child	$1.00{ }^{*}$	$0.70^{*}$	$0.85{ }^{*}$	0.69 *	-	$0.69 *$	$0.70{ }^{*}$	-	$0.70^{*}$	$0.77^{*}$	$0.70^{*}$		$0 .$	$.00{ }^{*}$
17. Seeks or makes a comparative evel.	$0.77^{*}$	0.36	0.66	0.86	0.70	$0.81{ }^{*}$	1.00	0.65	1.00	$0.90{ }^{*}$	0.59		0.0	. $00^{*}$
18. Demanding of adult	$0.88{ }^{*}$	$0.35{ }^{*}$	0.64*	$0.98{ }^{*}$	0.86	0.95	$1.00{ }^{*}$	$1.00^{*}$	$1.00{ }^{*}$	$1.00^{*}$	$0.73 *$	0.		.00*
19. Demanding of chil	$0.61 *$	0.37	0.46	0.76	0.92	0.84	0.95	0.85	0.95	0.75	0.79	0.7	0.	. $00^{*}$
20. Adult to do what self if exp.	$0.70^{*}$	0.87	0.79 *	$1.00{ }^{*}$	$1.00{ }^{*}$	$1.00{ }^{*}$	$1.00{ }^{*}$	-	$1.00{ }^{*}$	$1.00{ }^{*}$	$1.00{ }^{*}$	1.00	0.03	. 00
21. Cnild to do what self is exp	$1.00{ }^{*}$	$\cdots$	$1.00{ }^{*}$	$0.98{ }^{*}$	$1.00{ }^{*}$	$1.00{ }^{*}$	$1.00{ }^{*}$		$1.00{ }^{*}$	$1.00^{*}$	$1.00^{*}$	$1.00^{*}$	$0.9$	. $00^{*}$
22. Exhibits help	0.75	0.47	0.72	$0.91{ }^{*}$	--	$0.91{ }^{*}$	0.95	0.92*	0.94*	$0.80^{*}$	0.59 *	0.79	0	. $00^{*}$
23. Rejects positive bid from adult	$0.80{ }^{*}$	0.57	$0.71{ }^{*}$	0.98	$1.00{ }^{*}$	$1.00^{*}$	$1.00{ }^{*}$	$0.72^{*}$	$1.00{ }^{*}$	$0.98{ }^{*}$	$0.72{ }^{*}$	$0.95$	$0.5$	$1.00^{*}$
24. Rejects positive bid from child	0.73	$0.32 *$	$0.70^{*}$	0.97	0.98*	$1.00{ }^{\circ}$	$0.74{ }^{*}$	$0.68^{*}$	$0.68^{*}$	$0.89 *$	0.70	$0.78^{*}$	-0.07	1.00*

Appendix E (ront'd)

Unipolar Scale	Fortiand			St. Louis			Trentor.			3-Site Total			
	F(6)	S(3)	C(9)	F(5)	S(3)	C18)	$F(4)$	S(2)	c(6)	F(15) $5(8)$	c(23)	Range	(23)
2. Seeks adult's perm. to do something	0.85	0.69	0.81	0.81	$0.90^{*}$	$0.82{ }^{*}$	0.95	0.83	0.92	$0.50 \quad 0.81$			$1.00{ }^{*}$
cti. Seeks perm. of child to do samething	$0.78{ }^{*}$	0.22	$0.78{ }^{*}$	0.62	$0.69^{*}$	$0.7 i^{*}$	$1.00{ }^{*}$	$3.71{ }^{*}$	1.00*	$0.78^{*} 0.59^{*}$		0.0	$1.00{ }^{*}$
$2^{\prime \prime}$. Conforme to routine request of adult	0.63	0.49	0.59	0.81	0.85	0.83	0.8 ?	0.69	0.86	0.810 .68	0.68	-0.26	0.93
213. Conforms to routine request of child	0.58	0.41	0.48	0.77	0.84	0.83	0.94	0.66	0.87	$0.82 \quad 0.57$	0.66	-0.06	1.00
27. Rejects reasonable request of adult	0.83	0.61	0.81	0.79	0.94	085	0.94 *	0.85	$0.92^{*}$	$0.83^{*} 0.88$	0.81 *	0.30	$-1.00^{*}$
3 ). Rejects reasonable request of child	0.75	0.34	0.56	0.70	0.89	083	$0.8{ }^{*}$	0.72	$0.80{ }^{*}$	$0.75 \quad 0.71$	$0.7{ }^{\text {* }}$	0.04	-1.0**
. Engages in complementary behavior	0.69	0.66	0.66	0.88	0.85	083	0.9 E *	0.74	0.89	$0.82 \quad 0.71$	0.77	0.5	-0.96*
. Engages in parillel activ	0.68	0.60	0.67	0.71	0.59	065	0.89	0.66	0.87	0.750 .58	0.67	0.3	1.00
Concern forther in distress	0.77	$0.28{ }^{*}$	$0.62{ }^{*}$	0.89	0.86	089	1.00	0.98	1.00	$0.94{ }^{*} 0.86 *$	$0.84^{*}$	0.2	$1.00{ }^{*}$
. Praises or expresses approv, to adult	1.00 *	-0.05*	0.48 *	$1.00^{*}$	-	$10^{*}$	-	-	--	$1.00^{*}-0.05^{*}$		-0.05	1.00*
. Praises or expresses approv. to child	$0.48{ }^{*}$		$0.46^{*}$	$0.90^{*}$	$1.00^{*}$	$1.0{ }^{*}$		--	-	$0.70^{*} 1.00^{*}$		c. 2	$1.00{ }^{*}$
35. Expresses criticiam of adut.	0.87	0.73	$0.73^{*}$	$0.70{ }^{*}$	$1.00{ }^{*}$	$0.85 *$	$1.00^{*}$	--	$1.00{ }^{*}$	$0.95{ }^{*} 0.86$			$1.0{ }^{*}$
37. Expresses criticism of child	0.67	0.53	0.5.5	0.76	0.70	0.73	c. 98	0.79	0.98	0.760 .63		-0.04	$1.00^{*}$
33. Reciprocates with adult	$1.00{ }^{*}$	-0.02*	$0.49^{*}$	$1.00{ }^{*}$		$1.00^{*}$	--	--	--	$1.00^{*}-0.02$		-0.0	1.00*
37. Reciprocates with child	$0 . \% 0$	. $0_{4}^{*}$	0.69	$1.0{ }^{*}$	$0.84{ }^{*}$	$1.00^{*}$	$1 . x^{*}$	--	$1.00{ }^{*}$	c. $8 i^{*} 0.81$		-0.	$1.00{ }^{*}$
43. Tries to "make up" with adult	-		-	--	--	$\cdots$	-	--		- -			
41. Tries to "make up" with child	$0.65{ }^{*}$	$0.48^{*}$	0.65*	$0.59^{*}$	0.90	$0.70^{*}$		-0.03*	-0.03*	c. $6.6{ }^{*} 0.85^{*}$		-0.0	$1.00{ }^{*}$
42. Frierdly to adult	0.62	0.52	0.59	0.65	0.7T	0.75	0.85	0.75	0.79	C. 750.72	0.70	0.5	-0.92
43. Triendiy to child	0.77	0.46	0.65	0.79	0.68	0.79	0.80 ́r	0.6	0.81	0.810 .60		0.	-0.98
44. Nurturant to adult	c.85*	c. $533^{*}$	$0.63^{*}$	$0.7 i$	0.10	c. 75	0.95	0.83	0.98	$0.380 .66^{*}$		* 0.	$1.00{ }^{*}$
4\%. :lurturent to child	$0.6 ;$	0.13	0.51	0.75	0.76	C. 76	0.9.	0.53	0.92	0.810 .51		0.0	$-1.00$
45. Exhibits leadership	0.15	0.56	0.68	0.8	$0.93^{*}$	C. $30^{*}$	$\therefore 9$.	$0 . .2$	0.90	$0.82 \times 3 *$	0.	-0.0	0.9**
47. Behaves competitively	0.49	0.je*	$0.5{ }^{*}{ }^{*}$	$0.63 *$	c. $\mathrm{R}_{1}$	C.7 ${ }^{*}$	0.9:	0.00	0.9\%*	$0.6 .^{*} 0.41^{*}$		-	1. $0^{*}{ }^{*}$
4e. Seeks leadership of adult	0.20 *	-0.03*	-0.0c. ${ }^{*}$	$0.1 .9^{*}$	--	$(.4)^{*}$		0.c*	c. $13^{*}$	$\therefore 0^{*}-0.02^{*}$	c.	-c.	1.in*


Unipolar Scaie	Portland			St. Louis			Trenton			3-Site Total				
	F(6)	S(3)	c(9)	$F(5)$	S(3)	c(8)	F(4)	S(2)	c(6)	F(15)		c(23)	Rant	(23)
49. Seeks leadership of child	$0.7{ }^{*}$	0.62	0.70 *	$0.88{ }^{*}$	$1.0{ }^{*}$	$1.00{ }^{*}$	1.00	0.93	1.00	0.97	$0.86{ }^{*}$		. 03	$\cdots{ }^{*}$
50. Smiles and/or laughs	0.69	0.63	0.68	0.71	0.68	0.70	0.82	0.55	0.78	0.76	0.63		0.3	0.93
51. Engages in gross motor activity	0.75	0.59	0.71	0.89	0.90	0.89	0.96	0.89	0.94	0.82	0.85	0.8	0.	- 98
52. Engages in fine manipulative act.	0.63	0.59	0.59	0.86	0.85	0.85	0.87	0.58	0.83	0.76	0.65	0.7	0.2	77
53. Engages in cognitive activity	0.78	0.74	0.75	0.89	0.92	0.89	1.00	0.81	1.00	0.89	0.77	0.83	0.4	2.00
54. Engages in fantasy activity	0.82	0.80	0.80	0.89	0.86	0.86	0.95	0.78	0.95	0.90	0.80	0.85	0.5	-0.97
55. Engages in ertistic activity	0.97	0.62	0.83	0.91	0.85	0.88	0.95	0.89	0.93	0.87	0.83	0.8	0.5	-1.00
56. Concerned with satis. of phys need	0.74	0.58	0.68	0.88	0.75	0.86	0.98	0.75	0.94	0.88	0.74	0.80	-0.16	$-1.00$
57. Takes init. in carrying out own act	0.54	0.36	0.50	0.67	0.69	0.86	0.83	0.60	0.77	0.67	0.55		0.2	0.97
58. Tries to pursue difficult task	0.67	0.49	0.62	$0.8{ }^{*}$	$0.93^{*}$	$0.80^{*}$	0.96	0.76	0.94	0.80	$0.73^{*}$		0.03	$1.00^{*}$
59. Attempts to overcome obst. by self	0.40*	0.24	$0.40^{*}$	$0.90{ }^{*}$	0.81	0.86 *	0.9	-0.05*	$0.94{ }^{*}$	0.68	$0.6{ }^{*}$		-0.05	$1.00^{*}$
60. Exhibits persistence	0.44	0.22	0.35	0.35	0.67	0.56	0.91	0.65	0.84	0.4	0.63	0.6	-0.08	1.00
61. Complétes activity by self	0.77	0.50	0.68	0.87	0.77	0.83	0.85	0.77	0.85	0.79	0.69	0.7	0.4	0.96
62. Intrinsic satisfaction	0.26	0.22	0.24	0.62	0.71	0.63	0.82	0.54	0.80	0.62	0.59	0.5	0.02	-0.98
63. Fraises self	0.47*	0.46	$0.48^{*}$	0.73	0.96	0.81*	0.9	-0.05*	0.96 *	$0.8{ }^{*}$	$0.46^{*}$		-0.05	-1.00*
64. Threatens to act aggres. to adult		0.8**	$0.8{ }^{*}$	$1.0{ }^{*}$	--	$1.0{ }^{*}$	$1 . \infty^{*}$		$1.00^{*}$	$1.00^{*}$	$0.87^{*}$		0.0	*
65. Threatens to act aggres. to child	0.76	0.69	0.74	0.83	0.85	0.84	1.00	$0.15{ }^{*}$	$1.0{ }^{*}$	0.83	0.69		0.1	$-1.0{ }^{*}$
66. Fossessive	0.75	0.55	0.67	0.80	0.86	0.82	0.96	0.69	0.93	0.83	0.67	0.8	0.0	1.00
67. verbelly aggressive to adult	-	$0.8{ }^{*}$	0.8**	$1.0{ }^{*}$	$1.0{ }^{*}$	$1.0{ }^{*}$	$1.0{ }^{*}$	$1.0{ }^{*}$	$1.0{ }^{*}$	1.00*	2. $0^{*}$		0.8	$1 . \infty^{*}$
68. Verbally aggressive to child	0.39	0.37	0.38	$0.7 *$	0.85	0.83*	0.98	c. $88^{*}$	0.96*	$0.7{ }^{*}$	0.6**		0.0	$1.0{ }^{*}$
69. Eosses adult	$0.92 *$	$0.6{ }^{*}$	$0.84{ }^{4}$	$0.70^{*}$	$1.0{ }^{*}$	$1.0{ }^{*}$		1.00	$1.0{ }^{*}$	$0.84{ }^{*}$	1.		0.70	1.0
7). Eosses Child	0.69	0.50	0.65	0.89	0.75	0.85	0.93	0.67	0.84	0.76	0.68		0.0	1.00
71. Fhysically aggressive to adult	$1.0{ }^{*}$	$0.88^{*}$	$0.94{ }^{*}$	1.00*	1.00*.	$1.0{ }^{*}$	-	$1.00 *$	$1.0{ }^{*}$	1:00*	1.0		0.88	*
?2. Frysically aggressive to child	0.89	0.48	0.89	0.85	0.88	0.88	$0.99^{*}$	0. ${ }^{\text {b }}$	2.	Q, $0^{9}$	c. 9		-0.13	-1.


73. Dellberately aggressive to property 74 . Expresses neg. feeling about self

保
?.
-9. Kesponsive to teactine by adult
ponsive to teaching e: child
ac. imitates behavior of nilld
i3. 'ristructs or demorstrates
an intricetererbelly to vild
of Commur. meerintal anp. ideatunild
-n rommut.. mearireful comp. idea to adult
iqe. "erbailir lond
i... !1tfi-il+ to terstard
ti. :ues iu: .orcentrate or activit.

H., $\therefore$ ampltte wamatative grt



(corti)

	Fartlara	St. Lonis			'ratos.			3-3ite Total			
	F(F) $\quad 3(3) \quad \therefore(9)$	(0)	(3)	c(5)	F(.)	(.)	a 6 )	F(1) (4)	$c(\leq 3)$	Raret	(...)
	W. s* * 0.1: U.es ${ }^{*}$				1.0	,	1.0*	$0.79^{*}$ U.17*	$0.79^{*}$	0.08	
	$1.73^{*} 0.81^{*} 0.7{ }^{*}$	0.88*		$0.8{ }^{*}$	$1.10{ }^{*}$	0.8 ${ }^{4}$	1.00*	$0.89^{*} 0.81^{*}$	0.88		
	$1.00^{*} 1.00^{*} 1.00^{*}$		--	----	-			$1.00^{*} 1.00^{*}$	$1.00{ }^{*}$		
	0.080 .290 .60	0.83	0.19	0.83	1.00	0.65*	$1.0{ }^{*}$	0.80 0.65*	0.62	0.0	. $\infty$
	$\therefore$, 0.29 0.4t	0.70	0.95	0.70	0.98	0.63	0.93	$0.70 \quad 0.63^{*}$	$0.68{ }^{\text {E }}$	0.06	
4. Epsp, $\because$ trist efftorverj deferds	0.4.4.0.23 0.48	$0.91^{*}$	0.90	0.9**	0.93	0.7	0.90	c.84 0.69*	0.78	0.03	
Ladese. to trast.: berones ariery	$0.12^{*} 0.40 \quad 0.64{ }^{*}$	$0.82^{*}$	0.86	0.86	0.96	0.89	0.94	$0.88^{*} \quad 0.84$	$0.91{ }^{*}$	0.20	1. $x^{*}$
Medigi. of Medines	$0.0 .60 .49 \quad 0.64$	. 88	. 8	0.87	0, 28	- 13	. 9	, 86 0,63	-0.74		

$$
-163-
$$

## APPENDIX $\mathrm{F}^{*}$

Intercorrelations Among 18 Construct Measures
Within Sex-Age-Period (Fall 1 X Spring) Subgroups


$$
\begin{aligned}
{ }^{*} \underline{\underline{2}} & <.01 \text { (two-tailed) } \\
{ }^{* *} \mathrm{p} & <.001 \text { (two-teiled) }
\end{aligned}
$$

Iritercorrelations Among 18 Construct Measures
in Younger Boys During the Fall

Construct No.	1	$\geq$	j	4	5	6	7	8	9	10
1										
2	$63^{* *}$									
?	$38^{* *}$	$5.4{ }^{* *}$								
4	34	$26^{* *}$	$41^{* *}$							
$\therefore$	-06	14	02	43**						
$=$	$30^{* *}$	. 26	16	$22^{*}$	$55^{* *}$					
.	$-6{ }^{* *}$	$-74^{* *}$	$-60^{* *}$	-09	11	41**				
8	$-51^{* *}$	$-66^{* *}$	$-56 *$	$-34^{* *}$	$-24^{*}$	01	$59^{* *}$			
9	-10		-13	$49^{* *}$	$-62^{* *}$	$-38^{* *}$	$05$	$41^{* *}$		
10	$52^{* *}$	$49^{* *}$	$36^{* *}$	$-17$	$40^{* *}$	$-61^{* *}$	$-65^{* *}$	$-32^{* *}$	$22^{*}$	
	11	13	14	15	16	12	17	18		
11										
13	$29^{* *}$									
$1+$	$23^{*}$	$20^{*}$								
15	17	41*	06							
16	$20^{*}$	15	13	99				.		
12	109	$29^{* *}$	08	-01	-02					
17	-06	01	09	$-29^{* *}$	$-23^{*}$	$38^{* *}$				
18	00	09	-02	-08	-02		$2 \stackrel{3}{* *}^{* *}$			
	1	2	3	4	5	6	7	8	2	10
11	01	16	-0,	$\infty$	$\bigcirc$	-02	-12	09	03	07
13	07	${ }^{\text {c }}{ }^{*}$	?**	C.4*	0	$-1^{\prime}$	$-21^{*}$	-11	-18	$22^{*}$
1.4	-0t	$\infty$	\%	09	13	$\infty$	-03	$-{ }^{-4}$	-15,	- -6
1.	$-10$	- 63	08	$\therefore 0^{*}$	$-x^{\prime}$	-0e	-06	02	- 0	-C1
$?$	*	-09	-10)	12	n?	$-1 / 4$	03	$\infty$	-04	-03
$\cdots$	49**	$32^{* *}$	1	06	01	-17	$-43^{* *}$	$-24^{*}$	-16	$31^{* *}$
1.	$33^{* *}$		1.		$-10$	-1s	$-30^{* *}$	-13	09	$30^{* *}$
1 L		36**	iu	-10	$-22^{*}$	$-32^{* *}$	$-2^{* *}$	-18	01	$3{ }^{* *}$
	\%				169					

Appendix F (Cent'd)
Younger Girls in Fall

Construct Nu.	1	2	3	4	5	6	7	8	9	10
1										
$?$	$63^{* *}$									
3	$42^{* *}$	$50^{* *}$								
4	10	18	$53^{* *}$							
,	-02	-01	06	02						
$t$	$-40^{* *}$	$-35^{* *}$	$-28^{* *}$	-01	46**					
,	$-68^{* *}$	$-78^{* *}$	$-55^{*}$	$-25^{*}$	09	$42^{* *}$				
8	-5, ${ }^{* *}$	$-69^{* *}$	-55**	$-23^{*}$	-16	$24^{*}$	$68^{* *}$			
9	03	01	15	16	. $4 \mathrm{c}^{* *}$	. $45^{* *}$	-03	20		
10	$56^{* *}$	$62^{* *}$	$43^{* *}$	11	$-25^{*}$	$-67^{* *}$	$-6{ }^{* *}$	$-52^{* *}$	$30^{* *}$	
	11	13	14	15	16	12	17	18		
11										
13	$30^{* *}$									
14	$22^{*}$	$28^{* *}$								
15	08	45**	12							
16	$34^{* *}$	14	08	$\infty$						
12	19	$28^{* *}$	17	$\infty$	15					
17	18	12	15	-20	05	$28^{* *}$				
$1 ?$	05	19	-07	-12	-08	$45^{* *}$	20			
	1	2	3	4	5	6	7	8	2	10
1.1	18	$23^{*}$	09	03	03	00	$-34^{* *}$	--5	01	11
13	01	18	41**	47**	$-22^{*}$	-10	$-27^{*}$	-07	-06	
14	11	11	21	$24^{*}$	-09	-15	-17	-12	06	$23^{*}$
$1 \%$	-12	-07	06	21	-08	-01		12	01	$\infty$
$1 E$	13	19	19	$22^{*}$	11	-03	$-26 *$	$-13$	-08	$22^{*}$
12	$54^{* *}$	48**	$36^{* *}$	$23 *$	-08	$-24^{*}$	$-47^{* *}$	$-28^{* *}$	-06	$40^{* *}$
17	$38^{* *}$	$33^{* *}$	18	-03	-03	$-26^{*}$	$-30^{* *}$	-21	16	$26^{*}$
18	$34^{* *}$	$35^{* *}$	$28^{* *}$	06	$-23^{*}$	$-37^{* *}$	$-45^{* *}$	$-28^{*}$	08	$36^{* *}$

$-166$
Appendix F (Cont'd)
Older Boys in Fall

Construct No.	1	2	3	4	5	6	7	8	9	10
1										
2	55**									
3	$30^{* *}$	$38^{* *}$			;					
4	-01	16	$42^{* *}$							
$\checkmark$	-16	05	06	$37^{* *}$						
6	-16	-18	$-24^{*}$	17	$43^{* *}$					
$?$	$-65^{* *}$	$-64^{* *}$	$-54^{* *}$	-15	12	$32^{* *}$				
8	$-*^{* *}$	$-57^{* *}$	$-33^{* *}$	$-30^{* *}$	-16	06	$42^{* *}$			
9	-09	$-28^{* *}$	-16	$-39^{* *}$	$-63^{* *}$	$-4{ }^{* *}$	11	$35^{* *}$		
10	44**	$51^{* *}$	$35^{* *}$	-10	$-3{ }^{* *}$	$-60^{* *}$	$-56^{* *}$	$-28^{* *}$	12	
	11	13	14	15	16	12	17	18		
11										
13	41**									
14	$32^{* *}$	44**								
15	29**	$50^{* *}$	41**							
16	$22^{*}$	20	16							
12	$24^{*}$	20	.07	-02	03					
17	08	-04	-12	$\cdots{ }^{-25}$	-11	41***				
- 18	08	01	-08	-12	$\infty$	$46^{*}$	$34^{* *}$			
	1	2	3	4	5	6	7	8	2	10
11	07	$26^{*}$	18	10	12	-07	$-36 * *$	-01	-14	$22^{*}$
13	-03	$31^{* *}$	$54^{* *}$	$43^{* *}$	16	$-21^{*}$	$-31^{* *}$	-09	$-21^{*}$	25*
14	-20	11	$21^{*}$	17	17	-0¢	-02	10	-13	06
15	-19	11	11	$31^{* *}$	11	11	00	01	-13	-01
16	07	-04	$21^{*}$	$23^{*}$	06	-04	-06	11	-02	11
12	$53^{* *}$	$42^{* *}$	13	-01	-02	-05	$-42^{* *}$	-11	-19	$31^{* *}$
17	$3 * *$	18	04	$-31^{* *}$	-10	-15	$-34^{* *}$	-08	-01	$26^{*}$
18	$22^{* *}$	$2 *^{* *}$	09	05	01	-10	$-31^{* *}$	-11	-10	14

$$
-167-
$$

Appendix F (Cont' $\dot{\alpha}$ )
Olacr Girls A: Fall

Construct No.	1	2	3	4	5	6	7	8	9	10
1			.							
2	$58^{x *}$			*						
3	$35^{* *}$	41**								
4		$31^{* *}$	49**							
5	21	$29^{* *}$	06	15						
6	$-27^{*}$	$-26^{*}$	$-39^{* *}$	$-23^{*}$	18					
7	- $-69^{* *}$	$-76^{* *}$	-58**	$-23^{*}$	-11	$38^{* *}$				
8	$-57^{* *}$	$-69^{* *}$	$-46^{* *}$	$-34^{* *}$	$-29^{* *}$	$24^{*}$	$68^{* *}$			
9	$-27^{*}$	$-29^{* *}$	-08	-13	$-51^{* *}$	-06	17	$27^{*}$		
10	$53^{* *}$	47*	47*	$38^{* *}$	-05	$-62^{* *}$	$-56 *$	$-54{ }^{* *}$	- $\alpha_{4}$	
	11	13	14	15	16	12	17	18		
11										
13	$34^{* *}$									
14	$31^{* *}$	42**								
15	20	$38^{* *}$	16							
16	$32^{* *}$	18	06	-07						
12	02	$39^{* *}$	19	04	-05					
17	$29^{* *}$	17	-05	-05	15	$24^{*}$				
18	-19	17	-01	- -2	-19	49**	$\infty$			
	1	2	3	4	5	6	7	8	9	10
11	12	16	12	12	-07	-20	$-23^{*}$	-06	-02	$25^{*}$
13	05	$29^{* *}$	49**	$44^{* *}$	-01	$-45^{* *}$	$-29^{* *}$	-15	0	41**
14	06	17	16	15	05	$-23^{*}$	-17	-13	-07	14
15	-07	06	17	16	$\infty$	-02	-01	07	-11	$\infty$
16	-04	04	06	15	-01	-18	-12	-09	-03	13
12	$51^{* *}$	49**	$34^{* *}$	20	16	$-28{ }^{*}$	$-52^{* *}$	$-38^{* *}$	-11	$39^{* *}$
17	$2{ }^{*}$	21	12	08	-05	-13	-3***	-20	-03	$24^{*}$
18	$31^{* *}$	$30^{* *}$	$25^{*}$	01	07	-19	$-35^{* *}$	-13	03	19

-168-
Appendix $F$ (Cont'd)
Younger Boys in Spring

Construct No.	1	2	3	4	5	6	7	8	9	10
1										
2	$74^{* *}$									
3	$41^{* *}$	43**								
4	-01	01	$22^{*}$							
5		09		$38^{* *}$						
6	$-26^{* *}$	$-30^{* *}$	-11	$32^{* *}$	$42^{* *}$					
7	$-7{ }^{* *}$	$-78^{* *}$	$-56^{* *}$	02	08	44**				
8	$-45^{* *}$	$-46^{* *}$	$-42^{* *}$	$-31^{\text {² }}$		-09	$32^{* *}$			
9	-12		-08	$-43^{* *}$	$-59^{* *}$	$-37 *$	03	$30^{* *}$		
10	$56^{* *}$	$58^{* *}$	$36^{* *}$	$-24^{*}$	$-22^{*}$	$-61^{* *}$	$-68^{* *}$	-09	$22^{*}$	
	11	13	14	15	16	12	17	18		
11										
13	$26^{* *}$									
14	$25^{*}$	17						4		
15		$34^{* *}$	$21^{*}$							
16	$22^{*}$	$22^{*}$	03	10						
12	12	08	11	-08	-16					
17	-10	01	$-20^{*}$	$-40^{* *}$	-06	$26^{* *}$				
-18	01	11	06	00	-18	$32^{* *}$	$27^{* *}$			
	1	2	3	4	5	6	7	8	9	10
11	18	17	05	-1者	$\infty$	$-41^{* *}$	-26**	10	03	$40^{* *}$
13	02	02	$27^{* *}$	$23^{*}$	05	12	-09	-02	-17	04
14	13	14	08	11	15	-15	-17	10	-02	07
15	-07	-04	08	$35^{* *}$	12	13	$\infty$	-02	-11	00
16	08	11	05	19	06	02	-01	-11	02	05
12	$50^{* *}$	$39^{* *}$	14	-04	14	-17	-44**	-02	$-27^{* *}$	$33^{* *}$
17	$23^{*}$	$23^{*}$	09	$-26^{* *}$	-17	-16	$-23^{*}$	-02	07	$23^{*}$
18	$20^{*}$	$20^{*}$	13	-08	-05.	-18	$-27^{* *}$	02	-01	$23^{*}$

-169-
Appendix $F$ (Cont'd)
Younger Girls in Spring

Construct No.	1	2	3	4	5	6	7	8	9	10
1						*				
2	$69^{* *}$									
3	26	$35^{* *}$								
4	11	$26 *$	$52^{* *}$							
5	07	12	-01	$34^{* *}$						
6	-14	-09	-04	$27^{*}$	$58^{* *}$					
7	$-6{ }^{* *}$	$-6{ }^{* *}$	-55*	$-30^{* *}$	06	$30^{* *}$				
8	$-57 *$	$-5{ }^{* *}$	$-43^{* *}$	$-48^{* *}$	$-30^{* *}$	$-19$	42**			
9	-20	$-30^{* *}$	02	$-33^{* *}$	$-70^{* *}$	$-49^{* *}$	-04	$47^{* *}$		
10	$43^{* *}$	$42^{* *}$	$40^{* *}$	05	$-32^{* *}$	$-53^{* *}$	$-57^{* *}$		$24^{*}$	
	11	13	14	15	16	12	17	18		
11										
13	20									
14	27	$24^{*}$								
15	$28^{* *}$	$38^{* *}$	$37^{* *}$							
16	$22^{*}$	$22^{*}$	-05	04						
12	09	11	11	-03	-13					
17	01	-07	-10	$-31^{* *}$	00	$35^{* *}$				
18	-04	-03	-13	-21	-13	$26^{*}$	14			
	1	2	3	4	5	6	7	8	9	10
11	17	19	06	05	11	-09	$-22^{*}$	08	-06	21
13	-09	05	$28^{* *}$	$43^{* *}$	09	08	-19	-09	-14	$22^{*}$
14	01	08	-09	02	10	-13	-04	13	-04	08
15	-15	$\infty$	05	$27^{*}$	16	-03	-05	12	-07	03
16	03	01	08	08	-05	-06	-05	01	05	14
12	$52^{* *}$	$40^{* *}$	04	02	10	-06	$-40^{* *}$	$-25^{*}$	$-23^{*}$	$28^{* *}$
17	$35^{* *}$	$30^{* *}$	08	-16	-10	-08	$-28^{* *}$	-21	-02	$24^{*}$
18	13	14	11	-03	-19	-19.	$-26$	-05	11	$24^{*}$

-170-
Appendix $F$ (Cont'd)
Older Boys in Spring

Construct   No.	1	2	3	4	5	6	7	8	9	10
1										

## $\therefore 175$

-171-
Appendix $F$ (Cont'd)
Older Girls in Spring


$\operatorname{APPENDiX~G}{ }^{*}$<br>Scale Correlations with the 18 Construct Measures Within Sex-Age-Period (Fall X Spring) Subgroups<br>\section*{*<br><br>Notes for Interpreting the Contents of Appendix G.}

1. Major listings of Unipolar and Bipolar Scales correspond to scale titles given in Appendixes $A$ and $B$.
2. Column numbers (in parentheses) correspond to the 18 construct measures defined in Table 5 of the text.
3. Construct measures $1,2,3,4,5,6$, and 10 are defined solely by Bipolar Scales 12, 21, 16, 15, 4, 8, and 13, respectively. To avoid double listing, these Bipolar Scales are not in the major listing.
4. Row headings designate subgroups. For example, FYB refers to Younger Boys in $\mathrm{Fall}_{2}$.
5. An "X" following the number signifies that it was excluded from the analyses for reasons given in the text.
6. An "R" pollowing the scale number signifies that the original scele defined in Appendix A was reflected.
7. The "RS" following Bipolar Scale No. 2 signifies that this scale was reflected for boys but not for girls. Thus, for boys, higher values signify "Masculine," whereas for girls, higher velues signify "Feminine."
8. The aymbol "P-W" above a column indicates that correlations in that column are part-whole correlations with the construct measure. (See Table 5 in the text.)

リごご			
	－	－	－
$\bigcirc \div$	－		
		－	边
O－5			
－	\％		
－\％ex			
为	边	：10：0？	边
趘	¢		区
¢0\％			成
			！0000000
			－
		－	
	－	－	
			\％
	－		－
		－	
込		込	




unioolar seale nil． 13

unipotar scale no． 1

mb

$$
-i
$$

$$
=
$$


चioiooió




चióoióo

E゚ロ8ロ～0゙ロロ
こ，ióóói：



б๓～～

－io웅웅

－ieiiiic
 जㅇôㄷ．
 －iósicio：
$-$


uvipmlar scale wu. $21 x$

	1)	21	131	( 4)	$5)$	6)	71	$0)$	91	(10)	(11)	(13)	(14)	(15)	(16)	(12)	(17)	(18)
fye	0.10	0.0	0.02 ?	-. 06	14	-. 16	-.09	-.08	3.06	0.13	0.01	0.02	-. 04	- 10	-. 07	0.06	0.16	0.15
FO8	0.11	0.0	0.05	0.08	. 09	-. 22	-. 11	0.04	0.08	0.08	0.05	0.02	0.02	-. 11	0.05	0.0	-. 02	-. 05
FYG	0.09	0.11	0.09	0.18	20	14	13	-. 05	0.0	0.10	0.06	0.13	0.22	0.06	08	0.02	0.06	0.07
Fng	0.01	-. 02	-. 02	0.0	17	-. 07	-. 03	0.03	0.10	0.06	-. 01	0.05	-. 07	0.07	-. 07		-. 00	-.08
SV\%	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Son	-. 09	0.06	0.05	0.09	04	0.0	0.01	-. 02	-. 05	-. 09	0.01	0.08	0.04	0.04	0.17	0.18	-. 16	-. 13
SVG	0.04	0.05	-. 01	-. 08	. 12	-. 02	0.09	0.05	3.10	0.14	0.06	0.02	0.07	0.10	-. 02	-. 09	0.13	-.08
S9G	0.10	0.11	0.12	0.13	. 06	. 07	. 10	. 09	0.03	0.05	0.05	0.03	0.03	0.07	0.03	0.0s	0.10	0.01

unipolar scale no. 22

untpolar scale no. 23

	111	121	31	141	51	161		103	91	$(10)$	(11)	(13)	(14)	(15)	(16)	1121	1171	181
Fre	-. 21	-. 28	-. 15	- 15	- 14	0.0	0.26	0.28	0.23	-. 06	-. 03	-. 04	-. 02	. 10	0.04	07	0.07	. 09
FOB	-. 13	17	-. 12	14	. 15	-. 05	0.30	0.23	0.20	-. 04	10	06	0.0	. 02	. 15	13	08	14
fye	-. 11	07	-. 17	04	0.02	0.01	0.17	0.05	-. 01	-. 03	. 02	-. 04	-. 0 \%	0.03	0.03	12	0	11
FOG	0.02	0.10	0.01	9	-. 10	-. 05	-. 01	0.05	-. 10	-. 01	0.03	0.06	-. 07	0.08	-.05	-. 00	0.11	00
Sve	-. 15	- 10	.01	0.0	. 28	. 10	0.07	0.07	0.13	. 09	0.11	. 02	0.0	03	0.09		0	. 07
son	-. 13	-. 21	. 37	-. 21	-. 25	0.01	0.23	0.28	0.16	-. 03	-. 03	. 08	-. 04	. 03	0.03		--11	0.02
SYG	0.01	0.0	-. 01	-.24	-. 18	-. 09	- 0.08	0.2	0.24	0.14	0.21	-.01	-. 01	0.03	0.17	001	0.04	0.01
SOG	-. 15	-. 07	-. 22	0.10	0.07	0.03	0.17	-. 04	-. 08	-. 09	-. 03	0.11	0.11	0.16	0.04	-. 07	- +1	-. 05

UNIPOLAR SCALE NO. 24

	( 11	181	131	141	51	161	71	( 91	191	(10)	(11)	: 134	(14)	(15)	(16)	(121	117	(18)
FYR	n.09	-. 11	0.04	-. 16	-. 25	-. 79	-. 07	0.17	0.20	0.09	0.06	0.02	-. 13	0.13	0.0	-0.01	-. 14	0.11
Fnb	-.19	-. 27	19	14	11	02	0.19	2.30	0.14	- 0.06	-. 01	-. 08	0.03	-. 03	-.01	12		-. 14
FYG	0.75	0.11	-. 04	-. 06	19	17	. 11	0.04	0.25	0.14	0.10	0.14	0.07	0.12	0.05	0.02	0.05	0.04
Fnf	0.0	-. 02	0.08	-. 34	31	-. 12	12	0.11	0.15	-. 07	-. 05	0.02	0.01	0.12	-.09	0.08		0.17
Sva	-. 12	-. 12	n. 0		17	.11	-. 02	0.34	0.06	0.05	0.14	0.10	0.07	0.03	-. 02	0.12	0.01	0.07
STA	0.0 n	07	3	- 005	15	21	09	0.06	0.05	0.19	0.03	0.0	0.12	-. 03	0.16	0.23	-. 05	0.18
sug	-. 92	1:	$n 5$	-.08	-. 07	.19	-. 02	0.07	3.03	0.06	0.09	0.09	0.04	0.11	-. 11	0.09	-. 01	0.19
Sor.	n.nt	-. 12	. 1	0.04	0.03	-. 12	-. 16	0.13	-. 03	0.02	-. 01	-. 02	0.07	0.03	-. 09	0.23	0.05	0.12




UVIDNAR STALE NO. $26 x$

	(1)	23	131	4	( 51	61		,									1171	(10)
	3.08	0.05	-.c4	0.04	0.03	. 03	. 07	-. 02	0.04	0.04		0.12		0.12		0.8		. 01
\%	0.01	. 09	0.12	0.03	09	. 02	0	07	3.00	0.07	0.0	0.02	0.15	0.04	19	03		03
frg	0.	0.26	. 06	-. 01	00	. 05	19	14		0.12		0.07		0.02		. 33		. 23
Fog	n.?	n. 12	01	. 0	17	07	-. 11	14	,	0.11	-. 12	-. 08	. 0	05		22		0
Sra	n. 15	0.11	0.08	0.01	0.03	. 16	. 14	0.0	0.0	0.11	0.15	0.07	0.11	0.11		0.29	. 0	0.10
578	3.03			-. 15	0.05	19	. 01	0.12	0.01	0.07	0.06	-. 02						0.31
srg	0.03	-.nt	11	. 0.0	. 05	19	. 09	. 11	0.04	0.11	0.0	. 13	0.18	. 11		0.2		08

UVIPOLAG SCALE NO. $7 T$

untrmlar seale vi. $2 \theta$

																P		
	111	$0 \cdot 11$	131	$4)$	O5	(6)	7	(6)	91	${ }^{1101}$	11	${ }^{1133}$	14	15)	116)	1321	1371	${ }^{118)}$
Fra	r.?n	0.11	0.03	-. ${ }^{0} 4$	0.05	0.04	15	-. 115	08	0.05	. 06	0.08	-. 11	-. 02	0.01	0.57	0.13	0.17
$F$	9.10	is	n. 14	0.24	0.18	-. 03	1	17	15	0.15	0.07	0.31	0.14	0.08	0.09	0.49	. 09	0.34
fr:	n.1a	C. 11	n.19	0.21	0.02	34	13	0.02	. 05	0.11	0.05	0.23	0.10	0.06	0.02	0.58	0.10	0.26
$f 7$ \%	0.17	0.26	0.20	0.23	0.28	19	14	-.il 4	12	0.11	05	0.32	0.18	0.05	0.0	0.56	0.02	0.27
sra	0.18	0.19	04	10	0.14	. 17	16	0.16	18	0.12	0.11	-. 01	0.19	. 15	-. 21	0.4	0.16	0.18
STR	0.19	0.14	0.10	0.04	0.27	0.13	-. 12	-. 16	32	-. 05	. 01	0.13	0.0	. 06	0.03	0.48	0.03	0.09
sric,	0.14	0.13	n. 11	2	0.18	0.14	16	3	15	5	. 07	0.11	05	. 03	-. 23	0.55	0.13	33

uvtpolar seale os. 29

unipatar scale no. 3o

unidmlar stale no. 31


Unipolar scale no. 32

	$1)$	21	$3)$	41	5)	a)	7	81	91	(10)	(11)	1131	1141	(15)	1101	(12)	117	1181
Fra	0.02	0.01	n. 0	0.11	0.03	-.01	-. 05	0.05	. 06	0.09	0.09	0.26	0.19	0.27	0.14	0.15	0.14	- 10
F79	-. 12	0.0n	0.17	0.23	0.13	0.03	0.01	0.06	08	0.02	0.14	0.37	0.28	0.45	0.28	-. 07	. 19	. 21
frg	0.14	0.17	0.01	0.16	13	0.05	.17	-. 09	0.04	0.17	0.25	0.36	0.10	0.25	0.18	0.17	0.01	. 10
Fra	0.15	0.18	0.22	0.26	03	-. 14	.20	-. 11	. 02	0.25	0.30	0.26	0.21	$0.20^{\circ}$	0.37	0.11	0.16	13
sva	0.10	1	09	0.17	07	0.09	0.01	-. 10	$\cdots$	0.36	0.12	0.30	0.20	0.36	0.30	-. 01	. 10	10
512	0.01	-.01	0.15	0.20	-. 01	0.01	-. 00	-.73	-. 09	0.07	0.22	0.28	0.16	0.45	0.16	0.01	. 12	18
srg	-.05	0.06	n. 14	n-30	0.22	0.72	. 01	--0	- 21	0.09	0.30	0.42	0.04	0.26	0.31	0.0	. 05	. 22
$51:$	0.91	0.76	n.n	n.17	-. 05	-. 23	$\cdots .01$	-.	-. 07	0.03	0.24	0.45	0.29	0.35	0.29	0.00	-18	-. 13



	111	2)	3	4)	5)	1 6)	"	-1	193	110)	(11)	113)	114)	(15)	1161	1121	1171	(18)
fra	P. 16	0.11	-. 10	0.11	0.09	-.13	-.n7	-. 06	-. 10	0.11	0.02	0.05	-. 09	-. 03	-. 06	0.22	0.18	-.05
fje	0.0	cone	0.02	-. 18	の.03	-.19	-. 01	-. 15	0.06	0.16	0.01	0.15	0.04	-. 06	-. 09	0.05	0.20	0.07
Fro	-. 31	6.02	0.09	0.07	-.n6	-. 06	-. 09	-. On	-. 03	0.07	0.03	0.13	0.09	-. 01	0.02	0.0	0.07	0.04
fog	.. 03	-. 09	-. 19	-. 02	0.01	-.08	0.07	0.01	-. 11	0.14	0.06	-. 06	0.0	. 15	-.01	0.12	0.06	0.0
Srb	0.16	$0 \cdot 14$	0.01	0.05	0.09	0.07	-. 06	-. 14	-. 25	-. 02	0.0	-. 05	-. 07	-. 13	-. 07	0.07	0.13	-. 06
S09	0.09	-. 02	-. 05	-. 01	-. ${ }^{3}$	-. 04	-. 12	0.03	0.07	0.11	0.01	0.02	-. 05	0.01	-. 08	0.06	0.11	0.04
spe	-. 07	0.01	0.11	0.05	0.03	0.04	-. 04	-. 07	-. 09	0.0	-.01	0.12	0.0	-. 06	-. 04	-. 05	0.16	0.0
sor.	0.10	0.13	0.08	-. 15	-. 04	$\cdots$	-. 08	-. 14	-. 13	0.12	0.0	-. 06	-.0b	-. 10	0.13	0.15	0.15	0.09

UNTPOLAR SCAIE NO. $34 \quad x$

	111	21	3	41	$5)$	( 5)	71	B)	191	(10)	1111	(13)	11	(15)	11	(12)	117)	(18)
FYB	0.10	0.09	0.02	-. 06	-. 04	-. 08	-. 08	-.08	-. 06	0.13	0.06	0.17	-. 04	0.08	0.02	0.13	-. 10	0.07
FOB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FVG	0.14	0.07	. 04	-. 20	-. 06	-. 12	07	. 06	0.03	0.08	0.16	-. 11	0.07	-. 17	-. 04	0.11	0.05	0.14
fog	2.08	0.08	0.11	0.13	0.04	0.12	-. 08	-. 12	-. 07	0.06	0.13	0.13	-. 07	0.07	-. 07	0.0	0.12	0.08
Sre	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
508	0.08	0.18	0.02	0.05	0.13	06	-. 12	14	-.09	0.02	0.36	0.08	0.25	0.12	0.03	-. 05	--12	09
SrG	-. 06	0.0	0.23	0.25	-. 06	-. 08	-. 09	-.09	0.06	0.15	0.03	0.11	-. 06	0.16	0.21	-. 02	-. 08	-. 08
Sog	0.02	-. 15	0.09	-. 16	-. 08	0.03	-. 02	0.29	0.12	-. 17	0.10	0.08	0.11	0.10	0.04	-. 05	0.01	-. 12


	1)	21	$3)$	$4)$	$5)$	6)		B)	$9)$	1101	(11)	1	11	1	(16)	(12)	$(17)$	8)
Fre	0.00	0.08	-. 01	-. 07	13	07	09	0.03	0.02	0.05	0.25	0.06	0.03	0.16	0.0	0.16	12	0.07
FTA	0.07	0.09	0.12	0.06	01	-.01	-. 09	0.12	0.	0.06	0.23	0.23	0.24	0.15	0.18	0.03	09	0.02
fyg	0.05	0.11	0.09	. 05	07	02	-.06	-. 11	06	0.05	0.01	0.04	0.15	0.12	-. 02	0.05	.06	0.12
fjg	0.16	0.04	0.06	0.10	0.14	-. 13	-. 08	-. 32	-. 14	0.04	0.02	0.09	O.ct	0.02	0.09	0.23	0.11	0.01
Sre	0.11	. 01	-. 07	-. 13	0.08	0.07	0.07	0.12	. 03	-. 07	0.04	-. 12	0.06	-. 07	0.0	0.26	0.02	10
SOP	-. 01	0.07	0.12	0.01	0.11	-. 17	13	01	-. 06	0.10	0.05	0.0	0.06	0.01	0.02	0.16	-. 11	0.24
srg	0.20	0.16	0.06	0.02	-. 15	-.14	-. 19	04	0.04	0.24	0.25	-. 04	-. 07	0.06	0.04	0.08	0.07	0.10
S3	0.	0.09	-. 03	-. 03	0.04	0.11	$\cdots$	-. 02	-. 13	0.08	8	0.08	0.0	0.04	-. 04	7	12	2

Unidotar stale no. $36 x$

	111	31	$3)$	143	151	181	7	A)	$9)$	1101	[11]	(13)	(14)	(15)	$(16)$	$(12)$	117	1
FYR	0.0	0.03	0.03	-.ns	-. 01	-. 32	-. 02	0.03	0.04	0.04	0.25	0.01	0.03	-. 16	0.19	-. 11	-. 09	0.12
FOB	0.07	0.12	0.06	0.02	0.11	0.10	-. 12	-. 07	.11	0.12	0.22	0.11	0.06	0.13	0.12	. 01	0.05	0.05
Frs	0.79	0.05	0.03	0.11	-.13	0.07	10	-. 17	-. 22	0.0	0.17	0.11	-04	0.12	0.09	0.02	.06	0.12
FBG	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SYR	0.07	Q.1n	. .01	-.n3	C.0?	2R	11	0.01	0.10	0.23	0.21	-.04	0.09	0.18	0.03	0.05	. 12	0.13
STA	0.13	$\therefore .07$	0.03	-.n7	0.0	-. 23	.09	$0 . \%$	0.06	0.27	0.18	-. 10	-. 09	-. 14	0.12	0.09	0.11	0.10
Srg	0.23	2.19	0.12	0.71	08	. 28	-. 19	-.08	0.10	0.30	0.32	-. 13	0.02	0.04	0.14	0.06	0.18	0.02
¢ก\%,	0.0	$\cdots$	-.n2	-. 11	-. 19	-. 24	. 3	0.75	0.20	0.22	0.10	. 03	0.06	0.05	0.1	-. 0	0.0	-. 02

uvidolab scale mo. 37

untdolar scale no. 30 x


UntPolar scale no. 39

		2)	3)	$4)$	51			8	191	1103	113	(13)	(14)	4158	116	1128	187	183
FY	0.14	0.32	0.17	3.10	0.05	15	18	0.01	0.06	0.22	0.1	0.2	. 0	-. 07	0.0	0.18	0.22	0.07
Fng	0.10	0.0\%	n. 20	0.16	0.07	. 09	19	c.06	-. 08	0.07	0.15	0.24	0.11	13	-. 03	0.13	8	11
FYG	0.18	0.10	0.12	0.26	34	21	16	0	0.08	0.21	0.15	0.33	0.19	0.15	0.13	0.20	0.07	0.25
fog	0.12	0.15	0.25	0.23	0.19	-. 16	16	.13	. 13	0.26	0.01	0.30	0.16	0.12	0.08	0.38	0.11	0.10
5\%8	0.16	0.16	0.11	0.15	0.0	0.01	14	. 13	-. 12	0.07	-. 01	0.06	0.0	-. 01	-. 02	0.14	0.03	. 05
508	0.01	0.11	0.13	0.23	0.11	. 06	05	13	.14	. 01	. 03	0.02	0.05	0.09	-. 08	0.05	0.0	. 01
5yg	0.18	0.10	. 07	0.07	0.07	03	. 12	. 15	0.01	0.21	09	0.03	0.02	-. 11	. 03	0.02	0.07	. 10
6	0.	0.15	0.03	0.03	-. 08			0.0	-. 03	0.23		0.07	0.02		. 05	0.16	0.14	15

untpolar scale ho. 40 X

	(1)	2)	3)	4)	5)	(6)	171	181	91	1103	111)	(13)	1148	1158	136	4128	1173	(18)
Fra	n.7	0.0	0.0	0.0	0.0	0.0	0.c	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
¢na	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ก.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
fyg	n.n	0.0	0.0	0.1	ก.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
fnri	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0
sya	-..n7	n.0	-007	-. 07	-. 14	-.07	-. 03	0.02	0.03	0.04	0.11	-. 05	-. 05	-. 10	0.03	-. 12	0.07	0.0
Sct	-.n9	-.01	-.n9	-. 07	-. 21	-. 06	0.02	0.21	0.10	0.13	0.05	-. 02	-. 06	-. 02	0.15	0.01	-. 03	0.07
SYG	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
s\%s.	n.	0.0	9.0	0.0	0.0	0.0	n.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

unipolar sfale no. 41

	111	7)	31	$(4)$	151	61	71	$9)$	91	1101	(11)	(13)	(14)	(15)	(16)	(12)	117	(18)
Fra	0.12	0.04	0.03	-. 02	-. 04	-..07	-. 09	-. 97	-. 02	0.05	-. 06	-. 02	. 09	-. 07	0.0	0.19	0.06	0.11
Fif	0.10	0.04	-. 06	-. 25	-. 22	-. 13	-. 01	0.74	0.13	0.08	-. 10	-.	-. 14	-. 17	-. 08	$\cdots-02$	0.02	-. 05
frg	0.11	0.07	0.03	0.14	12	-. 05	. 12	-. 09	17	0.02	0.15	0.09	0.02	-. 01	0.12	D. 10	0.03	0.16
fig	0.79	0.18	0.18	-. 11	16	-. 02	-. 14	0.06	02	0.15	0.19	0.10	03	0.01	0.06	0.10	0.13	0.16
Srb	-. 09	-. 12	0.0	-. 05	07	-. 01	0.01	0.23	. 0	0.01	0.04	-. 02	08	-.04	-. 12	D. 15	0.10	0.08
508	0.10	-. 03	0.05	0.04	. 12	0	. 11	0.02	-. 01	0.05	0.09	-. 02	-. 03	0.05	0.26	$\cdots$	0.07	0.14
srg	0.14	0.06	0.02	-. 01	17	26	10	-. 02	0.15	0.19	0.02	0.14	0.15	0.03	-. 05	9.03	0.04	0.11
SOG	0.11	05	3	0.07	3	15	14	0.9		0.11	0.07	. 03	-. 09	0.04		0.15	0.06	0.18

unipolar scale no. 42

									$9)$	(10)	$\begin{gathered} P-W \\ \text { (i11) } \end{gathered}$	(13)	1	(15)		1123	71	(8)
Frb	0.20	0.35	0.19	0.01	02	.13		15	0.0	0.25	0.71	0.35	0.19	0.06	0.13	0.13	0.07	0.05
FOB	0.08	0.34	0.21	0.15	O.OA	-. 12	36	08	13	0.23	0.12	0.39	0.28	0.15	0.08	0.20	0.07	0.08
frg	. 24	0.30	0.12	0.04	01	. 09	31	09	.09	0.07	0.72	0.2	0.19	. 0	. 18	0.22	0.10	07
${ }_{\text {EVGg }}$	0.18	0.29	0.22	0.09	-. OB	32	30	. 19	0.12	0.30	0.68	. 0.32	0.27	0.08	0.24	0.14	0.14	. 0
SYA	0.26	0.22	0.11	-. 11	-. 04	-. 30	-. 28	0.0	-. 01	0.38	0.74	-0.28	0.08	0.05	0.09	9.1e	0.03	0.10
508	0.30	0.32	0.17	0.10	0.16	10	26		16	0.26		0.32		0.19	$0.20$	0.09		0.03
Srg	0.	0.24	0.12	0.16	0.12	-. 06	. 35	07	.10	0.30	0.73	0.31	0.26	0.23	0.18	0.23	0.08	0.15
Sog	0.	0.	0.13	0.14	0.09	0.01	-. 13	-. 03	-. 15	0.12	0.74	0.24	0.	0.06	0.	$-.03$	-.0t	

unipolar scale no. 43

	$(1)$	2)	3)	141	5)	$(6)$	171	( 81	(9)	$(10)$	(11)	(13)	(16)	(15)	(16)	(12)	117)	(18)
FrA	7.48	0.47	0.30	0.10	0.08	-. 16	-. 53	-. 34	-. 15	0.31	0.07	0.15	0.07	-. 06	-. 09	0.62	0.35	0.26
F38	0.52	0.45	0.14	-. 08	-. 03	-. 07	-. 45	-. 19	-.15	0.28	0.15	0.12	0.06	-. 10	-. 08	0.66	0.42	0.35
frg	0.57	0.55	0.39	0.19	0.17	-. 18	-. 57	-. 45	-. 16	0.35	0.18	0.17	0.15	-. 12	0.13	0.71	0.29	0.41
FJg	0.64	0.4 A	0.20	0.05	0.14	-. 25	. 58	. 41	-. 23	0.30	0.14	0.16	-. 02	-. 06	04	0.07	0.31	0.42
SYe	0.41	0.33	0.24	0.15	0.21	-. 04	-. 38	0.19	-. 24	0.18	-. 01	0.21	0.12	0.06	-. 09	0.63	0.22	0.29
S08	0.42	0.24	0.11	-. 13	0.05	-.it	. 23	. 07	-. 03	0.20	0.04	0.14	-. 16	-. 22	. 01	0.58	0.34	0.26
Srs	0.61	0.39	0.03	-. 01	0.0	-. 17	-. 39	-. 31	-. 18	0.27	0.14	-. 01	0.14	$\cdots$	0.04	0.63	0.36	0.03
sog	0.58	0.31	0.21	0.03	0.02	-. 14	-. 50	-. 22	-. 15	0.15	-. 07	-. 12	-. 01	-. 10	-.08	0.69	0.21	0.35

untpolar scale no. $44 x$

	(1)	3	31	141	51	(6)	171	( 81	( 9 )	1117	1111	(13)	(16)	$(15)$	(16)	(12)	1171	(18)
FYA	0.08	0.07	0.11	0.07	6.05	0.05	-. 06	. 89	-.08	0.94	0.03	-.14	-. 09	0.05	-. 09	-.15	-. 04	0.05
Fni	0.91	0.01	0.07	0.01	0.0	0.04	-. 04	6	-. 06	0.03	0.07	0.10	0.03	. 14	0.05	0.0	0.03	. 05
frg	0.11	0.06	0.09	0.02	0.03	0.01	14	09	0.06	0.11	0.20	0.14	0.12	-. 10	0.04	0.06	0.12	0.02
fis,	0.07	0.02	n.	0.12	0.05	-. 01	. 09	07	0.06	$0.0{ }^{\circ}$	0.75	-. 03	-. 03	0.0	0.17	0.0	0.16	.03
SYA	-. 03	- 0 - 0	3.03	0.04	0.04	0.04	n.07	.n7	0.06	-.01	0.13	0.09	-. 06	0.03	-. 06	O	0.03	0.0
5.38	$n .11$	0.10	0.09	0.05	0.06	0.0	. 19	. 08	-. 12	n.06	0.16	0.16	0.21	-. 03	0.00	. 06	0.11	0.05
srg	0.05	-. 05	n.e5	-.n2	-. 16	-. 05	0.01	$0 . n 6$	0.14	b. 10	0.09	0.15	0.08	0.05	0.06	-. 02	0.27	0.04
SOG	0.0	-.0s	0.09	0.80	0.08	0.18	0.04	0.06	13	-.15	0.2)	0.09	0.12	-. 06	-. 11	-. 11	$\because 10$	-. 07

UNBPTLAR SCALE NH. 45

jutpolab scale no. 46


UNTODLAR SCALE NO. 47

	111	21	15	( 41										15				
	0.16	0.87	0.15	. 01	06	. 20	-. 24	. 06	0.01		0.0			. 0.07	03	0.24.	0.22	. 02
\%	0.16	0.16	0.37	0.18	OB	. 22	24	0.3	04	0.22	0.24	0.53	0.1	0.1 ?	0.02	0.21	0.07	
YG	0.16	0.15	0.13	0.12	OR	(9	16	. 05	. 08	0.20	. 0	0.32	0.12	0.76	0.22	0.2	0.05	12
ng	0.26	0.32	0.35	0.35	19	-. 29	29	23	0.02	0.35	0.1	0.50	0.23	0.16	0.00	0.5	0.05	20
Sre	0.09	0.13	0.08	-. 09	0.0	17	17	0.06	0.03	0.11	0.20	0.22	02	. 01	0.12	0.1	0.08	. 06
-	0.16	0.23	0.13	. 0	. 06	15	16	11	-.04	0.12	0.02	0.07	. 07	. 01	0.05	0	0.15	. 09
Srg	0.24	0.26	+			25	23		. 05	. 27	. 13	. 04	. 22	. 15		0.2		

untontag siale no. 40

											P-W							
	$1)$	23	31	$4)$	( 5)	61	71	101	( 91	$(10)$	(11)	(13)	(14)	(15)	(16)	$(12)$	117	(16)
Fre	-. 08	-. 05	-. 04	-. 13	-.ta	2.06	0.04	0.12	0.06	-.ns	0.32	-. 01	0.02	0.03	0.11	-.06	. 08	0.11
FOB	-. 16	-. 14	13	-.13	-.08	0.0	0.18	0.21	0.15	. 08	0.13	-. 04	. 06	-. 01	-. 08	15	18	13
Frs,	-. $0^{6}$	0.0	04	0.34	0.06	0.17	-. 02	0.07	-..12	-. 14	0.29	0.03	-. 01	0.18	0.12	-. 0,	. 17	.17
Fns	-. 04	0.11	11	0.0	0.05	-.03	0.05	0.05	c. 10	0.01	0.16	0.04	0.06	0.03	0.11	-. 07	0.10	.12
5 Sa	n. 01	-.OA	05	- 0.01	0.04	0.05	0.02	0.05	0.0	0.0	0.12	-. 06	0.12	-. 05	0.05	-11?	-. 16	-. 10
SJB	0.01	0.17	. 02	0.96	0.16	0.05	0.07	0.04	. 9	. 07	0.27	0.07	0.15	0.15	-. 1	0.0	. 05	. 07
Srg	-. 01	0.0	-.14		0.02	0.03	0.11	0.11	$-13$	-. 17	0.22	--. 17	0.01	$\bigcirc .01$	0.0	-15	. 07	-. 11

UNIPOLAR SCALE $\mathrm{N}: 49$

																P-H		
	$1)$	(2)	3)	$4)$	5)	6)		日)	$9)$	(10)	(11)	1131	(16)	1153	$(16)$	(12)	(17)	$8)$
fre	0.02	-. 04	-. 17	0.07	0.15	0.12	0.07	0.0	-.01	-. 11	-. 07	-. 11	10	-. 13	. 06	0.30	0.12	
FJP	0.12	-. 0 ?	0.05	0.07	0.14	0.29	01	0.10	-. 11	-. 08	0.01	0.11	07	0.01	-. 09	0.37	0.21	0.13
frg	0.10	0.00	0.09	0.16	3	0.11	09	0.03	04	01	03	14	10	01	.07	0.31	0.17	0.14
FOG	0.05	-. 11	03	05	-. 07	0.11	0.09	0.05	0.18	-. 01	0.0	0.05	0.01	. 08	. 16	0.23	0.04	0.08
Sys	0.11	0.01	04	01	0.20	0.16	-. 04	0.01	. 16	-. 03	. 01	-. 07	-. 03	-. 10	. 15	0.45	0.16	-. 02
S50	0.01	0.08	05	02	0.13	0.20	0.06	0.02	07	. 12	-. 13	0.02	. 04	. 0	0.10	0.33	0.02	0.04
SYG	0.11	0.05	05	0.05	0.25	0.33	0.0	. 13	19	-. 11	-. 07	0.04	0.0	. 04	-. 15	0.48	0.11	0.01
506	. 3	0.07	-. 01	-. 01	2	24	0.02	.03	-. 19	-. 10	0.03	-. 04	. 0	. 07	-. 05	0.	. 1	-. 03

untpolar scale ho. 50

unipalar scale nio. 56 x

untpalar scale mo. 57

unidolar scale no. so

unipolar scale no. 59

	111	121	131	(4)	( 51	161	17	101	191	1201	1111	1131	(14)	(12)	(16)	1121	1171	(18)	
frb	0.08	0.15	0.06	0.05	0.10	0.05	-. 05	-0.08	-. 15	0.09	0.06	0.36	0.07	0.04	-. 16	0.25	0.10	0.0	
$\mathrm{fOB}^{\text {O }}$	3.05	0.11	0.25	0.12	0.0	-. 22	-. 15	0.01	-. 04	0.14	0.26	0.49	0.23	0.12	0.03	0.20	0.17	-.03	
frg	0.19	0.22	0.19	0.13	-. 11	-. 21	. 16	-. 08	0.01	0.20	0.03	0.33	0.06	0.13	0.05	0.23	0.09	0.21	
\%OG	3.16	0.21	0.41	0.44	0.06	-. 37	-. 24	-.19	-0.08	0.34	0.0	0.47	0.20	0.10	0.13	0.33	0.12	0.20	
SYA	-. 02	0.05	0.12	0.0	0.0	-. 04	-. 05	0.00	0.03	0.03	0.11	0.19	0.20	0.04	-. 05	0.14	0.01	0.10	1
538	0.79	0.13	0.11	0.11	0.16	0.05	. 19	-. 05	-. 17	0.10	0.24	0.25	-.01	0.04	0.11	0.08	0.09	0.06	
Srg	0.19	0.14	0.16	0.15	0.10	0.06	-. 10	-.08	-. 00	0.20	0.17	0.24	0.07	0.11	0.07	0.24	0.12	-. 01	8
SOG	0.06	0.05	-. 04	0.06	0.0	-. 02	-. 09	0.03	-. 05	-. 12	-. 05	0.03	-. 03	0.02	0.06	0.13	-. 08	0.21	

unidolat scale no. 60

	( 1)	( 21	( 3)	a)	( 5\%	161	171	(8)	91	1103	1111	1331	(13)	(15)	(16)	1121	1171	1181
Frb	0.09	0.16	0.08	0.05	-. 10	- 15	-. 17	-0.04	-. 03	0.22	0.28	0.71	0.07	0.21	0.11	0.27	0.02	0.17
FAB	0.05	0.28	0.37	0.25	0.03	26	25	18	12	0.29	0.31	0.	0.19	0.34	0.06	0.27	0.07	0.04
frg	0.02	0.14	0.20	0.27	20	. 07	-.is	04	0.0	0.04	0.15	0.64	0.17	0.29	07	0.25	0.16	0.15
fog	0.11	0.35	0.48	0.34	10	-.38	-. 36	-. 25	01	0.38	0.26	0.77	0.34	0.16	0.10	0.44	0.23	0.11
SYB	-. 02	-.03	0.15	-. 05	. 14	0.10	06	0.08	08	0.08	0.16	0.58	. 09	0.02	0.01	0.06	0.16	0.05
S08	0.13	0.19	0.22	0.10	0.08	0.02	12	20	09	0.21	0.25	0.56	03	0.10	0.13	0.28	-. 08	0.06
SvG	0.04	0.11	0.23	0.14	0.0	0.08	. 24	-. 01	. 06	0.21	0.25	0.56	-.01	0.14	0.16	0.17	0.20	0.04
536	-. 37	0.10	0.11	0.19	0.14	0.07	0.04	-. 10	-. 19	0.03	0.27	0.62	0.16	0.24	0.29	0.07	-. 13	-. 1

untadlar scale no. el


UNTODIAR SIALE NU. 62

unipolar scaile no. 63

	17	27	${ }^{3}$	4		6)		81	( 7	1101	115	123)	181	(25)	18	128	127	
	0.17	07	0.11	0.07	-12	. 31	,	02	0.13	0.	0.08	0.1	0.02	0.10	.	0.26		11
F08	0.1	0.14	0.21	0.12	0.02		. 24	0.0	0.03	0.	0.2	0.3	0.	0.16	0.0	0.22	0.	0.13
res	0.	0.08	0.17	0.1	. 12	0.05	1	0.0	. 1	0.06	0.0	0.	0.0	0.2	0.0	. 1	--1	0.09
0	0	0.15	. 05	0.0	. 0	-. 62	15	-. 0	0.12	0.05	. 3	0.1	. 2	0.1	. 0	0.1	. 0	. 1
5 s	0.25	0.27	. 13	0.10	0.14	17	28	-. 03			0.27		-i	0.0	0.0	0.28	0.0	0.22
	0.19		0.16	0.18	.17		19	. 03	22	0.11	0.34	0.1	0.18	0.25	-. 0	0.23		
Srg	0.17	0.33		0.15	. 01				10			0.0	. 13	. 1	. 0	0.1	. 0	-. 01
STG	0.10							0.16		0.22	. 1	0.0	. 2	,	-. 02	0.1	. 1	0.01

unipalar scale no. $64 \quad x$

unipolar scale no. 6 s

	(1)	121	( 3)	(4)	( 5)	6)	17	( B)	$(9)$	110)	(1:1)	(13)	(14)	(15)	1269	112]	[17]	(18)
Fr8	0.09	0.11	-. 03	-. 16	-. 14	- 19	-. 18	0.04	0.15	0.22	0.09	-. 03	-. 02	-. 23	-. 06	0.13	0.12	0.05
FOA	0.16	-. 04	0.02	. 09	-.21	-. 15	-. 11	0.11	0.24	0.13	-. 05	0.05	0.0	-. 04	0.02	0.13	0.20	0.06
Frg	0.15	0.16	0.05	0.08	37	-. 33	.19	0.10	0.26	0.26	0.07	0.30	0.09	0.12	0.0	0.23	0.23	0.29
Fic	0.10	0.18	7. 21	0.09	-. 18	-. 26	-. 18	-. 05	0.27	0.22	-. 04	0.20	0.03	-. 02	0.03	0.31	0.18	0.21
Sra	0.19	0.14	0.09	-. 26	22	-. 16	-. 19	0.13	0.17	0.33	-. 04	-. 01	0.02	-. 10	-. 04	0.23	0.20	0.21
S58	9.22	0.05	-. 12	-. 30	17	-. 21	0.02	0.03	3.73	0.23	0.02	0.03	-. 09	-. 04	0.01	0.02	0.0	0.15
SyG	0.03	-. 02	-. 05	-. 23	16	-. 27	07	0.23	0.44	0.20	0.10	-. 03	0.01	0.0	0.02	0.08	0.19	0.14
Soc	0.20	0.10		11	-.71	2	25	0.14	0.22	0.34	-. 16	-. 06	0.04	-. 14	0.0	0.34	0.18	0.26

UNIPALAS SCALE NO. 66

	11	$2)$	31	141	$5)$	6)	71	$9)$	191	1103	(11)	(1)]	(14)	(15)	1161	112)	117)	(18)
Frb	0.18	0.02	0.12	-. 10	-. 17	23	-. 18	0.06	0.19	0.26	0.10	0.21	0.09	0.0	-. 12	0.21	0.19	0.20
F7A	0.17	0.13	0.19	0.01	14	39	17	-.n1	0.24	0.36	0.01	0.23	0.06	0.01	-. 10	0.19	0.19	0.24
frg	0.38	0.24	0.12	0.ns	32	40	-. 29	-. 09	0.29	0.39	0.04	0.14	0.08	0.02	0.0\%	0.37	0.27	0.38
$F 5 G$	0.17	0.08	0.26	0.16	18	-. 43	-. 23	0.0	0.17	1). 37	0.06	0.46	0.25	0.04	-. 08	0.34	0.16	0.31
5 rB	0.15	0.22	0.21	-. 15	28	40	. 33	0.13	0.23	18.37	0.18	0.11	0.17	0.15	0.10	0.13	0.14	0.21
SOB	0.14	0.08	0.27	¢. 07	0.04	.32	-. 22	-. 16	2.11	0.27	0.07	0.21	0.02	-. 05	0.09	0.11	0.35	0.31
$5 \times \mathrm{G}$	-. 02	-. 04	0.09	-. 06	. 30	-. 36	-. 11	0.23	0.37	9.31	0.08	0.18	0.19	0.27	-. 05	0.13	0.31	0.25
SOG	0.17	0.21	0.01	-. 08	-. 24	-. 39	-. 19	0.07	0.09	1). 28	-. 02	0.03	0.03	-. 02	0.14	0.16	0.31	0.25

UNTPDLAR SCALE MO. 67 x

	111	123	133	$1{ }^{13}$	( 51	161	171	181 0	${ }^{1} 91$	${ }^{1101}$	${ }^{1113}$	1131	1143	1351	1167	1121	1111	83
FVB	-.13	-. 09	-. 06	-.33	-. 23	-. 25	-12	0.16	0.32	$1) .21$	0.02	0.02	0.08	-. 10	-. 07	-.03	0.16	-. 09
F3B	-. 13	-. 22	-. 18	-. 17	-.13	-. 07	0.13	0.20	0.15	-. 06	0.0	-.08	-. 06	-. 01	0.14	-. 03	0.37	-. 02
FYG	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.3	0.0
FOG	0.88	0.08	-. 02	0.0	0.04	0.12	0.01	-. 92	0.10	0.06	0.17	0.15	0.15	0.07	-. 07	0.0	-. 38	-. 08
5 sb	-. 07	0.0	-. 07	-. 07	-. 14	-. 07	-. 03	0.02	0.03	0.04	0.11	05	-. 05	-. 10	0.03	-. 12	0.37	0.0
508	0.04	-. 02	0.01	. 05	-.17	-.11	-. 07	0.03	0.25	10.13	-. 07	09	-. 08	-. 11	-.08	-. 08	0.31	0.10
SrG	0.13	0.12	. 0.01	-. 16	-. 10	-. 26	-. 09	0.14	0.21	0.26	0.17	-. 09	0.18	0.02	0.09	0.06	0.19	0.06
$50 G$	0.10	0.11	0.12	0.13	-. 16	25	. 20	-. 03	0.14	11.16	-. 10		-. 08	. 022	-. 08	0.08	0.10	0.10

unspolar scale no. 68

	113	21	131	( 4)	( 5)	163	(7)	(8)	1	110	11	1131	11	11	11	11	1	11
FrB	0.25	0.08	0.03	-. 35	-. 36	-. 42	-. 26	0.01	0.35	13.40	-. 07	-. 02	-. 08	-. 13	-. 11	0.10	0.19	0.22
FO8	0.23	0.04	0.07	06	42	22	. 18	0.01	0.32	13.21	0.0	. 03	. 03	. 0	-. 01	0.05	0.37	. 08
fyg	0.22	0.15	0.03	14	12		25	-. 08	0.19	13.30	0.12	0.10	0.0	-. 06	. 0	0.1	0.12	0.24
fog	9.08	-. 01	0.03	9	06	16	07	0.13	0.11	13.13	0.13	0.15	0.06	0.11	0.0	0.13	0.0	0.15
Sv8	0.15	0.17	0.10	16	11	31	-. 21	0.12	0.16	0.32	0.21	0.08	0.19	0.09	0.02	0.23	-. 01	0.25
509	0.07	0.07	0.05	08	12	46	13	0.33	0.23	9.34	0.05	0.06	0.07	-. 11	0.02	0.09	0.04	0.23
SYG	0.12	0.02	0.07	24	-. 42	52	. 26	0.27	0.4?	3. 34	0.13	0.06	0.21	-. 02	-. 05	0.15	0.09	0.13
S76	0.2	0.09	-. 11	-. 16	-. 22		13	0.16	0.22	0.30	-. 02	-. 07	0.09	-. 0	-. 09	0.18	0.0	0.32

untpolar stale mo. 69

	119	121	31	(4)	151	$6)$	71	181	191	[10)	1113	1131	114)	1151	1167	${ }^{1} 121$	1171	${ }^{(18)}$
Frb	0.92	0.09	0.19	0.04	-. 04	08	-. 03	0.11	0.11	3.13	0.02	0.09		-. 10	07	0.11	0.07	0.07
$1{ }^{188}$	0.02	0.16	. 03	0.05	0.07	09	09	-. 13	0.02	-.04	0.17	0.18	0.03	0.12	. 04	0.05	0.09	0.13
FrG	0.78	0.23	$\cdots{ }^{-0}$	-.? 3	-. 24	13	. 14	0.05	0.41	0.23	0.15	0.13	0.13	0.04	0.03	0.08	0.14	0.02
FOG	-. 96	-.02	0.23	0.0	0.04	. 07	-.03	-. 12	-. 07	-. 04	0.11	0.21	0.04	0.07	. 07	0.10	0.12	-. 08
SvB	-. 32	0.06	-. 02	. 06	17	10	07	-. 05	0.07	0.09	0.11	-. 10	. 06	--13	0.04	-. 14	0.01	-. 04
$5{ }^{\text {AB }}$	0.01	-.n!	0.01	-. 07	d	06	. 03	7. 32	3.10	0.13	2.14	-. 02	. 06	-. 02	0.05	0.03	0.07	0.07
SrG	0.07	0.04	0.07	0.03	. 03	-. 18	-. 10	0.0	?.11	0.17	0.17	0.02	0.09	0.10	0.20	0.02	0.04	0.01
57 G	0.96	O.OB	0.1 C	B. 22	-. 12	-. 15	-. 03	0.08	1.16	0.22	0.18	0.05	0.13	0.09	0.17	-. 10	0.01	-. 08

untodlar sfale nju. to

	$1)$	$2)$	31	41	51	6)	1	81	$9)$	110)	111)	(13)	(16)	(15)	(16)	(12)	1171	(10)
fva	0.28	0.23	$0 . .19$	-. 09	-. 23	40	. 32	-. 10	0.08	0.40	05	0.13	0.01	-. 20	27	0.31	0.25	0.30
FDA	0.19	0.11	0.06	0.0	. 11	36	.17	-. 11	0.09	0.1 .4	.07	-. 01	-. 06	27	. 13	0.20	0.19	0.23
frs	0.48	0.2n	0.30	0.19	-. 21	-. 47	-. 33	-. 13	c. 19	0.44	-. 01	0.09	0.03	-. 17	0.02	0.41	0.32	0.41
FOG	0.31	0.33	$0 . .23$	0.11	0.13	37	36	. 26	-. 06	0.39	0.10	0.23	0.11	-. 07	.13	0.38	0.04	0.35
SYB	0.13	0.24	9.. 15	. 07	-. 24	34	-. 27	0.11	0.22	0.31	0.09	0.11	0.16	-. 03	0.04	0.27	0.10	0.26
STB	0.14	9.05	n. 05	17	. 19	30	-. 19	0.0	0.29	0.31	0.04	0.10	0.06	-. 21	-. 05	0.16	0.05	0.17
Svis	0.24	0.19	3. 25	.n4	-. 29	47	-. 41	-. 07	0.28	0.52	0.04	0.08	0.05	0.0	-. 06	0.26	0.17	0.36
S36.	0.32	0.19	0.04	.14	-. 32	43	-. 35	0.07	3.16	0.43	-. 12	0.05	. 06	-. 19	0.05	0.35	0.15	0.55

untpolar scale no. y x

	1 1)	2)	31	( ${ }^{\text {a }}$	5)	( 6)	171	( 8)	( 9)	1101	111)	113)	114)	1151	1161	1121	(17)	(18)
fr8	0.10	0.03	-. 04	-. 21	-. 22	-.13	-. 07	0.15	0.26	0.15	0.14	-. 05	-. 07	-. 02	. 08	0.05	0.08	0.02
F08	0.02	0.05	-. 12	-. 24	- +12	09	-. 05	0.01	0.09	0.12	-. 06	-. 10	0.0	. 01	02	0.0	0.03	0.03
frg	0.34	0.0	0.03	0.12	-. 21	12	.01	0.08	0.22	0.08	01	03	0.07	10	0.03	0.11	. 09	0.02
fog	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0
SYB	0.07	0.08	-. 02	-. 28	24	24	16	0.13	0.17	0.26	0.13	-. 07	08	. 03	07	. 02	0.11	0.0
SOg	0.13	0.07	0.02	09	09	. 16	-.n9	-. 03	0.21	0.16	0.07	0.04	06	. 04	0.09	06	0.04	0.14
SrG	0.03	0.0	-. 01	-. 10	. 15	0.02	. 09	0.15	0.19	0.13	0.10	0.02	0.05	-. 03	0.16	-. 06	0.15	0.13
sog	0.11	U.0	0.01	0.01	16	16	0.01	0.11	0.08	0.16	0.18	0.03	0.13	0.07	0.13	. 10	0.01	-. 00

untpolar scale no. "?

	(1)	21	31	4)	5)	$6)$	7	s)	$9)$	110)	111)	(13)	(14)	(15)	(16)	412)	1171	(18)
frs	0.21	0.11	-. 07	-. 35	-. 36	-. 35	-. 25	0.06	0.42	0.37	0.04	-. 06	. 06	. 15	. 13	0.18	0.29	0.23
fna	0.14	0.07	-. 11	44	37	-. 32	14	0.91	0.45	0.32	0.07	15	18	. 14	10	0.07	0.27	0.0
frg	0.28	0.24	0.02	14	27	35	29	-. 11	3.39	0.38	0.07	-. 05	0.03	. 01	0.06	0.20	0.32	0.22
fors	0.20	0.14	0.. 09	07	16	18	14	-. 01	0.12	0.24	0.05	0.10	. 04	.	07	0.20	0.11	0.29
Sv8	0.17	0.13	-. 01	. 46	25	39	. 19	0.16	0.40	0.41	0.16	-. 17	.07	. 11	-. 02	0.13	0.28	0.07
538	0.16	-. 02	0.03	25	24	26	13	-. 01	0.33	0.28	-. 13	0.75	.14	. 12	0.06	0.02	0.07	0.09
srg	0.03	-. 01	0.0	-. 16	48	-. 41	-. 14	0.20	0.50	0.31	-. 05	-. 02	0.05	0.0	-. 05	0.11	0.17	0.11
Sog	0.22	0.14	0.09	-. 28	44	-. 34	-. 25	0.33	0.45	0.39	-. 11	-. 17	9.06	-. 1	0.01	0.17	0.25	0.21

unipolar scale no. ${ }^{3}$

	(1)	21	3)	$4)$	( 5)	b)	7	A)	9)	1101	(11)	1131	(14)	(15)	(16)	1121	(17)	(18)
FYA	0.28	0.14	0.01	40	-. 32		-. 22	-. 31	0.32	0.38	-. 02	-. 07	-. 03	. 16	-. 12	0.13	0.41	0.20
FOR	0.15	0.03	0.04	41	27	-. 36	-. 19	0.15	3.31	0.31	0.0R	0.0	0.11	-.07	0.02	0.14	0.22	0.06
frg	0.23	0.23	-. 01	-. 25	-.1s	-.26	-. 21	-.n9	3.21	0.25	0.20	0.11	-. 05	-.06	0.02	0.07	0.33	0.10
F3G	n.0n	0.20	0.17	-. 13	-.19	. 17	-. 16	0.0	3.06	0.27	0.10	0.15	0.12	0.04	0.0	0.01	0.18	0.17
SYa	0.10	0.14	0.11	50	13	10	29	0.15	0.20	0.25	0.07	-. 01	-.06s	-. 21	-. 08	0.10	0.23	0.04
Sta	0.14	0.77	-0 ?	4	19	14	10	0.74	0.16	0.25	0.05	0.10	-. 06	0.01	0.07	0.13	0.14	0.15
srg.	0.15	0.1s	0. 08	-.18	-.11	.14	-. 23	n.14	3.12	0.23	0.15	0.07	0.13	0.0A	-. 06	0.26	0.14	-. 01
Sig	9. 25	0.10	م. 94	-	-. 25	.1^	-. 14	3.15	3.18	0.28	-. 15	-. 11	0.01	-. 13	0.02	0.31	0.22	0.20

untpolar scale wn. 14

	13	$2)$	133	(4)	(5)	6)	7	$3)$	9)	(10)	1111	1131	(14)	(15)	(16)	$(12)$	1171	183
Fre	0.03	0.10	0.09	0.04	-. 13	-. 10	-. 04	0.09	0.10	0.17	0.22	0.12	0.05	. 03	0.04	0.12	0.0	0.13
FOB	0.06	0.03	04	09	0.0	03	0.0	0.04	0.07	-. 02	0.11	0.	-. 1	-. 01	0.01	0.03	-. 05	0.04
Frg	0.09	0.08	0.06	0.02	-. 22	. 07	11	0.04	0.13	0.09	0.09	0.06	0.01	0.08	-. 08	0.19	-. 09	0.1
Fig	0.13	0.13	0.01	0.05	0.18	0.15	-. 02	-.06	-. 10	0.02	0.1A	0.10	0.20	0.12	-. 02	0.03	-. 01	-. 16
Sra	-01	-. 01	0.03	0.0	-.05	0.02	0.0	0.01	0.0	0.07	0.15	0.08	-. 09	$\rightarrow 05$	0.17	0.0	0.0	- 06
508	0.13	0.04	04	-. 05	0.03	0.03	07	0.11	0.04	-. 02	0.18	0.10	0.09	0.20	-. 07	0.09	0.03	0.1
$5 \times 6$	0.21	0.26	0.09	0.03	. 03	-. 20	19	-. 04	-. 14	0.25	0.26	0.09	0.08	0.21	0.02	0.20	0.08'	$\rightarrow 13$
506	0.0	0.	0.06	0.17	07	09	04	0.04	0.0	0.04	0.12	-. 11	0.14	0.02	0.02	-. 09	0.02	-. 06

untpolar scale no. 75

	(1)	13	3)	4)	5)	6)	7	( 8)	$9)$	(10)	(11)	(13)	(16)	(15)	(16)	1129	6179	4109
Fra	-. 25	-. 22	-. 26	-. 05	0.08	0.18	0.30	0.19	0.08	-. 14	0.08	0.01	0.03	0.01	0.03	-.17	-. 0	-. 24
F08	-. 07	- ${ }^{\text {( }}$	14	. 05	0.03	0.07	0.10	0.03	0.05	0.0	0.0	0.01	0.0	0.14	-. 08	0.0	$\rightarrow 03$	-. 03
Frg	0.24	0.29	0.02	01	0.11	-. 06	-. 12	-. 25	-. 05	0.17	0.05	-. 06	02	. 01	0.00	0.04	0.18	-10
FOG	-. 08	-. 13	-. 21	0.0	0.12	0.04	0.19	0.03	-. 07	-. 05	0.01	0.02	0.06	-. 07	-. 11	$\rightarrow 01$	11	11
sve	-.31	28	34	-. 08	-. 06	0.17	0.32	0.24	0.11	-. 24	-. 14	-. $13^{\prime \prime}$	-. 08	-. 04	. 15	.18	16	11
Sue	nor?	-04	0.04	0.12	0.18	0.13	0.09	-. 20	-. 13	-. 24	-. 02	0.02	0.01	0.05	. 02	-. 03	0.09	-. 17
5 sG	-. 07	-.08	14	-. 12	-. 19	$\rightarrow 08$	0.16	0.04	0.02	0.03	-. 08	0.0	0.07	0.03	-.06	0.0	0.01	0.03
506	-. 18	12		01	.07	-. 05	0.24	0.13	-. 06	0.01	0.04	0.12	. 02	-	. 05	0.0	-.04	-. 01

unidolar scale mo. 76

	11	$2)$	(3)	4)	(5)	( 6)	71	(8)	9)	$(10)$	(11)	131	161	15)	(10)	1123	(17)	
	0.13	0.09	0.19	0.01	02	0.01	. 0	. 15	0.14	0.1	-.09	-. 01	. 08	.05	16	0.0	0.10	0.01
Fos	-. 02	0.10	0.	0.08		. 0	02		-. 04	0.06		. 02	0.06			02	- 0	. 07
ro	0.2	0.25	. 0	02	-. 05	-. 12	19	. 20	. 02	0.1	. 1	0.05	0.		- 0	22	0.32	-1
Foc	0.19	0.12	0.05	0.15	0.05	-. 23		-0	0.10	0.29	0.20	. 1	0.16	. 08	. 10	0.14	0.1	. 1
-	0.17	0.19	0.13	0.08	0.16	0.22	10	35	0.01	0.02	-16		. 12	06	13	-. 07	0.0	. 1
508	0.15	0.01	0.18	0.14	. 02	0.22	20	.28	0.11		27	0		08	-00	. 21	. 0	
Srg	0.19	0.14	0.08	0.01	0.11	26												

unjpolar scale no. 71

											P-W							
	(1)	121	131	4	( 51	( 61		18		(10)	(11)	113	1141	(15)	116)	4127	1	${ }^{(18)}$
Fr8	0.04	0.12	-. 07	-. 03	0.02	02	-. 07	0.05	0.04	0.02	0.56	0.20	0.22	0.06	0.13	0.12		
Fob	0.03	0.05	0.01	15	0.03	06	12	0.07	. 05	. 09	n.54	0.04	0.04	0.10	0.14	0.17	0.10	. 05
frg	0.18	0.23	0.11	22	02	04	24	-. 10	. 07	.23	45	02	0.14	. 08	. 09	0.23	. 16	. 0
Fir	ก.76	06	n. 04	. 10	03	0.7	-. 15	-. 07	0.01	0.15	0.54	. 0.12	0.18	0.03	0.20	0.04	0.24	-. 09
sym	0.76	0.02	n.06	0.0	0.01	12	ก9	0.31	01	0.16	0.44	0.09	0.15	0.13	0.09	0.05	-. 12	. 01
	0.15	0.29	n. 17	0.14	0.14	3	22	-. 12	20	0.21	. 56	0.11	0.21	0.17	0.07	0.06	0.0	0.03
5	n. 11	0.26	$n .14$	-. 04	.na	12	-. 22	-. 02	0.05	0.35	0.62	0.05	0.17	0.03	0.09	0.13	0.18	03
sns	0.38	-.	0.0	0.76	.	0.0	9.05	0.04				0.09	0.27	0.0	-. 05	-. 09		

uvipdlar stale nr. is

																P-W		
	111	121	$(3)$	141	( 51	161	17	( 8)	191	1101	(111	1131	(14)	(1*)	1161	(12)	1171	(18)
Fra	0.17	0.10	ก.fi6	0.04	0.0	-.08	-. 15	-. 06	-. 05	0.08	0.09	0.18	-. 02	0.14	-. 04	0.45	C.05	0.07
Fib	0.20	0.09	0.09	-. 02	0.08	0.12	-. 05	0.02	-. 20	0.0	0.07	0.08	0.03	0.08	-. 03	0.44	C. 02	0.10
Frg	0.27	0.19	0.22	0.07	0.0	-. 14	-. 24	-. 17	3.05	0.33	0.13	0.13	0.05	-. 09	0.05	0.55	C. 17	0.30
Fac	0.13	0.19	0.11	0.35	C. 06	-. 16	-. 20	. 09	-.16	0.15	-. 03	0.26	0.09	0.08	0.02	0.53	C10 07	0.30
SYB	0.15	0.04	0.08	0.0	-. 12	-. 06	-. 09	-. 02	0.08	0.20	0.02	0.12	0.02	0.02	0.0	0.34	c. 09	-. 04
508	0.21	0.17	0.109	0.09	0.16	-. 11	04	-. 07	-. 06	0.11	0.17	0.09	0.06	0.14	0.03	0.46	-. 06	0.22
SrG	0.17	0.12	0.03	-. 02	-. 10	-. 16	-. 16	-. 04	0.01	0.25	-. 02	0.07	0.0	-.01	-. 02	0.56	C6. 07	0.20
S0G	0.33	0.12	0.10	-. 05	-. 15	$-13$	-. 25	-. 36	0.07	0.23	-. 01	0.14	0.17	0.14	-. 06	0.38	C. 0	0.09

unipolar scale no. 70.

											P-W							
	111	$2)$	131	$(4)$	3)	161	171	(8)	( 91	1101	(11)	[13)	(16)	(15)	(16)	(12)	1171	(18)
Fr8	-. 10	0.02	-. 05	0.02	0.04	0.07	-. 01	0.07	0.01	0.03	0.58	0.14	0.14	0.11	0.23	-. 10	-. 13	-. 12
F08	-. 13	-. 02	-. 06	0.15	0.22	0.28	0.06	0.20	-. 19	-. 06	0.40	0.13	0.33	0.24	0.23	-. 04	-. 10	-. 10
Frg	0.02	0.10	0.06	0.04	0.09	0.03	-. 14	0.01	-. 01	0.06	0.53	0.19	0.19	0.12	0.15	-. 02	c. 04	-. 04
$f 0 G$	0.02	-. 02	-. 02	0.0	0.03	0.09	-. 02	0.08	-. 15	-. 01	0.45	0.07	023	0.12	f. 18	-. 10	C. 06	-. 21
$5 \times 8$	0.04	0.01	-. 08	0.17	0.16	-. 10	-. 08	0.02	-. 04	0.06	0.51	0.18	0.27	0.15	0.21	-. 03	-. 24	-. 07
538	-. 03	0.01	-. 11	0.09	0.05	0.05	0.02	0.16	-. 06	0.0	0.42	0.03	0.21	0.10	0.10	-. 03	.15	-. 01
5 sc	-. 09	-. 04	-..15	-. 02	0.28	0.14	0.10	0.05	-. 18	-. 16	0.48	0.10	0.08	0.20	0.21	-.15	-. 31	-. 23
50G	-. 15	-. 17	0.01	C. 09	0.0	0.0	0.13	0.15	-. 15	-. 08	0.53	0.14	0.29	0.21	0.09	-. 16	15	-. 24

unipolar sfale no. 80

																P-N		
	$1)$	$2)$	3)	41	151	61	7	(8)	9	(10)	1111	11	11	(15)	(16)	(12)	1	,
Fr8	0.01	0.04	-.02	0.04	-. 01	05	-. 01	0.0	-. 08	0.05	-. 02	0.06	0.09	0.05		0.23	$\infty$	
$f 0$	0.04	0.03	0.06	0.06	09	. 17	0.02	0.04	-. 11	$-.08$	0.09	0.1	0.0	0.1	-. 08	0.21	. 06	-. 06
Frg	0.17	03	03	05	09	. 03	02	0.11	11	02	0.00	0.0	0.02	0.01	. 15	0.20	C. 08	0.06
FBG	0.11	0.13	0.14	0.08	0.14	0.03	16	-. 12	16	Of	0.08	0.11	0.09	0.14	0.06	0.27	. 08	. 06
5 s 8	0.02	-. 04	-. 04	0.0	0.13	0.12	01	0.07	19	0.01	0.11	0.0	04	0.08	0.03	0.21	09	. 06
50	0.02	-. 07	0.	0.08	0.14	0.01	0.04	0.06	. 12	-. 13	0.12	0.0	0.10	0.21	-. 02	0.17	-. 17	01
SYG	0.12	0.06	0.02	0.10	0.19	0.17	0.02	. 17	-. 11	-. 16	0.0	0.02	0.05	0.09	. 05	0.25	. 05	. 02
$50 G$	0.12	0.	0.13	-. 02	0.72	0.08	-. 11	-. 13	-. 14	-. 06	0.0	-. 07	-. 10	-. 04	-. 05	0.2	0.0	-. 08

untpolar stale no. 8 ?

											P-W							
	$1)$	$2)$	)	143	156	( 61	7	$8)$	91	${ }^{101}$	$(11)$	1131	$(14)$	(15)	1161	1123	117	18
Frs	0.02	0.02	-. 05	0.06	0.13	0.11	01	0.06	11	-. 01	0.31	0.11	0.21	-. 04	0.12	0.01	-. 01	08
FOB	15	0.09	0.10	0.0	05	04	-. 15	-. 10	0.0	0.11	0.22	0.1	0.03	0.1	. 02	0.11	0.16	0.15
g	0.24	0.14	0.06	0.03	. 02	. 8	11	10	02	0.12	0.30	0.07	0.32	0.03	0.01	0.11	0.22	0.01
Fig	0.10	0.05	-. 01	0.7	-. 03	. 01	12	. 14	. 05	0.05	0.19	0	-. 09	-. 03	0.22	0.02	0.09	.11
5 rg	0.10	0.07	0.11	0.09	0.02	11	13	. 07	3.05	0.10	0.2 h	. 06	0.10	0.07	0.21	0.08	0.05	07
STR	0.15	n.ns	0.0	0.03	ก.18	13	0.0	. 04	. 06	.0?	0.08	-. 0 a	0.05	0.05	0.19	0.04	-. 14	0.04
Srif	0.03	0.15	.11	0.0	-. 02	02	. 16	0.03	0.07	0.07	0.20	0.08	0.04	0.05	0.07	0.03	0.09	0.02
51.	-.16	-. 0 h	ก. 0	-.n4	0.0	-. 03	0.09	03	-. 07	-. 07	0.13	-. 05	-. 04	0.0	0-1	-. 05	0.02	-. 0

untpolar scale no. hz

																P-W		
	111	121	133	141	( 5)	161	173	181	193	1101	(11)	1131	(18)	1151	1161	(12)	$(171$	(18).
fre	0.24	0.13	-. 02	-. 09	0.01	-. 27	-. 15	-. 13	-.08	0.13	-. 05	0.05	0.06	--16	-. 03	0.56	0.35	0.20
F08	0.25	0.19	-. 05	-. 10	-. 08	06	-. 16	0.03	-.08	0.13	0.11	-. 03	0.02	0.04	0.07	0.43	0.22	0.36
fyg	0.10	0.16	0.09	0.02	-. 20	-. 06	-. 15	-. 04	0.0	0.10	0.24	0.04	0.04	0.01	0.13	0.36	-. 01	0.12
FOG	0.15	0.21	0.26	0.08	0.19	. 08	-. 29	-. 13	-. 03	0.13	-. 10	0.26	0.21	0.05	0.05	0.31	0.05	0.20
SY:	0.19	0.15	0.02	-. 11	-. 01	-. 08	-. 22	0.05	-. 10	0.14	0.10	0.04	0.05	-. 09	-. 05	0.58	0.23	0.22
SO9	0.04	-. 10	-. 07	0.03	0.07	0.04	0.12	0.07	-. 04	- 10	-. 09	-. 06	-. 14	0.0	0.14	0.26	-13	-. 01
SvG	0.23	0.18	-. 10	-. 03	0.02	0.03	-. 11	-. 08	-.06	0.03	0.05	-. 11	-. 01	-. 11	-. 09	0.52	0.10	0.16
SOG	0.17	0.05	0.01	-. 18	0.05	0.06	-. 10	-. 06	-. 02	0.03	-. 17	-. 13	-. 12	-. 18	-. 02	0.51	0.37	0.19

UnIPOLAR SCALE NO. 63

	$1)$	21	3)	41	51	61	71	81	91	1101	[11)	1131	(14)	(15)	(16)	(12)	(17)	1181
FYs	0.09	0.0	0.04	0.05	0.04	-. 12	03	-. 01	-. 13	0.04	0.12	0.20	0.21	0.11	0.07	a.20	0.01	0.02
FOR	0.11	0.04	0.24	0.18	05	-. 17	. 15	0.05	0.11	0.16	0.11	0.21	0.30	0.16	0.18	0.12	--1	0.08
FYg	0.25	0.2 \%	0.26	0.20	01	26	29	22	-. 03	0.27	-. 08	0.00	0.22	0.04	-. 07	0.21	0.21	0.15
FOG	0.31	0.25	0.21	0.14	0.15	30	. 28	25	-. 19	0.37	0.16	0.27	0.41	0.01	-- 01	0.36	0.07	0.17
SYA	0.13	0.15	0.12	-. 05	-. 06	07	12	. 02	. 02	0.12	0.0	0.18	0.01	0.09	0.13	0.13	. 03	0.11
508	0.21	0.24	0.21	0.19	0.20	6	19	-. 16	09	0.18	0.20	0.34	0.05	0.18	0.10	0.15	00	0.01
SYG	0.23	0.25	0.19	0.18	-. 03	. 02	24	16	. 01	0.18	0.07	0.25	0.21	0.16	-. 05	0.24	0.06	-. 05
SOG	0.23	0.21	0.22	0.27	0.08	11	21	27	18	0.18	0.19	0.31	0.14	0.09	.12	0. 01	0.05	-. 02

UNTPOLAR SCAEE MO. BA

P-M																		
	11	21	31	$4)$	$5)$	(6)	71	181	191	1103	(11)	(13)	(14)	(15)	(16)	1123	(17)	(10)
fye	0.19	0.28	0.07	0.01	-. 02	-. 11	0.25	-. 09	0.01	0.23	0.70	0.17	0.17	0.21	0.06	0.16	-. 02	0.09
f08	0.14	0.24	0.20	0.01	0.03	-. 18	-. 36	0.0	-. 02	0.28	0.76	0.24	0.32	0.14	0.26	0.25	0.13	0.11
frg	0.32	0.3A	0.23	0.13	02	-. 16	47	-. 23	0.06	0.20	0.74	0.30	0.14	0.06	0.36	0.31	0.17	0.13
FOG	0.21	0.22	0.13	0.12	. 05	-. 28	.30	-. 16	-. 11	0.22	0.70	0.17	0.16	0.05	0.35	0.02	0.29	-. 17
Sve	0.30	0.26	0.14	-. 15	. 02	. 37	. 33	-. 02	0.07	0.45	0.76	0.21	0.20	0.11	0.13	0.22	--06	0.14
SOA	0.27	0.17	0.06	0.02	-. 02	-. 24	-. 20	0.02	0.0	0.31	0.74	0.18	0.24	0.18	0.30	0.09	0.01	0.10
Srg	0.22	0.25	0.14	0.13	0.02	-. 13	-. 29	-. 06	0.02	0.24	0.74	0.22	0.26	0.25	0.16	0.24	0.08	0.10
SOG	0.07	0.03	0.02	0.05	0.16	0.01	-. 02	0.11	-. 18	0.08	0.73	0.12	0.19	0.11	0.25	-.09	-. 16	-. 09

uvipolar scale mo. 85

																P.W		
				$4)$	51	$6)$		B)	91	[10)	1117	(13)	(16)	(15)	1161	1123	(17)	1101
FY8	0.5 .7	0.39	0.29	0.04	-. 16	-. 29	-. 55	. 29	0.03	0.39	0.10	0.09	0.13	. 03	.	0.60	0.32	0.32
FPn	C. 5.5	0.45	0.20	0.0	06	16	53	21	-. 06	0.36	0.27	0.18	0.11	O)	0.04	0.72	0.318	0.33
FYG	0.55	0.52	T-34	0.19	. 03	34	55	42	0.02	0.47	0.18	0.11	0.13	.04	0.12	0.66	0.37	0.30
FnG	0.43	0.50	0.25	0.18	. 02	33	A4	45	- 21	0.52	0.25	0.19	0.11	0.0	0.0	0.66	0.33	0.30
SY8	3.46	0.84	0.24	3.11	C. 11	. 06	39	28	. 04	0.2n	0.03	0.14	0.13	0.09	0.05	0.47	0.07	0.30
STA	0.46	n. 71	0.19	-. 03	C.04	18	. 34	.19	-. 05	0.24	0.09	0.14	-. 05	. 11	0.05	0.45	0.09	0.18
SvG	0.4	م. ${ }^{0}$	\%-10	0.10	- -10	2R	-43	-. 25	0.02	0.87	O.ns	0.03	0.10	-08	-0 0	0.61	0.34	0.18 0.25
sag	0.44	0.1	9.14	--0'	,	P1	- 39	-.05	-. 02	0.20	. 01	. 06	0.05		0.0	0.58	0.10	0.25


$0^{\circ} 0^{\circ} 0^{\circ}$
こ00000000
こiiiioii
－1100000
cooli
$\therefore 0^{\circ} 0^{\circ} 0^{\circ}$
111
－iifi i i
－0̇ilodic
－ciódódi
－00000 $0^{\circ} 0^{\circ} 0^{\circ}$
－¢0̇cicosó
－○́óócóóo

玉očuño
 ＝ícióo ó
 ＝ioioiió
 Eii；ioi；i

 ＝i；ioioio

こoうioióo

Eicoioioio
 $=0.000^{\circ} \dot{0}$ の


 －ioi iioó
 －iioioicio
テロ゚ロッロッロ゚ン





ニスベスベざどと －o்ocicirio


UNIPGLAR SCALE NO．BR



ลan
 ごがo ioioo


ますódooio



こ．ioंojö
न̄
－iióoirió
玉ñay
ニัロ

－i活倍

－iciicicí

－ホ்்iilí：
$=$ च̂ex



$=0$ صْ

unipolar scale no. 90

untpolar scale nu. 91

	11	3	3)	41	51	(6)	71	(8)	(9)	(10)	(11)	(13)	(14)	(15)	(16)	(12)	(17)	(18)
Frb	-. 27	32	40	09	0.06	0.05	0.42	0.36	0.08	. 18	0.13	0.08	0.0	0.04	0.12	-.09	0.06	0.03
FRe	.17	18	24	21	0.13	06	0.21	0.27	-. 04	04	0.10	0.11	0.20	0.16	. 03	0.09	0.03	9
frg	07	12	21	07	0.05	0.07	0.08	0.14	-. 02	12	0.16	0.17	0.07	0.27	0.07	02	. 07	. 09
fog	. 08	. 07	26	13	0.15	0.07	0.20	0.19	0.05	-. 09	0.14	0.07	0.03	0.05	0.00	03	0.09	-. 12
5 y 8	0.01	09	18	04	0.10	0.06	0.08	0.13	-. 18	0.03	0.06	-. 06	0.14	0.13	0.02	0.06	. 07	0.06
SOA	0.04	13	35	28	. 07	-. 04	0.15	0.32	0.05	-. 09	0.11	-. 13	0.05	0.11	0.21	0.08	. 0	0.15
sris	-. 06	. 05	.15	13	. 01	-. 03	0.03	0.27	-. 03	0.05	0.14	0.12	0.26	0.19	0.10	-. 01	. 06	0.04
SOG	. 20	OA	-. 19	a	0	01	0.29	0.19	0.02	-. 07	0.17	0.07	0.19	0.14	1	07		-. 10

unipolar scale no. 92

	11	2)	$3)$	$4)$	\%	6)	\%	( 8 )	(9)	(10)	(11)	1	11	(15)	$(16)$	$(12)$	1	(18)
Fr	. 04	-.0日	-. 15	-. 17	-. 17	-. 15	0.13	0.22	0.17	0.20	0.15	0.25	-. 01	0.09	0.03	0.09	0.03	-. 04
Fof	-. 16	-. 10	-. 10	-. 25	04	-. 06	0.28	0.19	0.16	0.0	0.03	0.10	0.07	0.12	-. 02	-.	01	-. 15
frg	-.10	0.0	24	-. 04	14	01	9.07	0.13	0.08	-. 11	0.23	0.09	0.09	0.03	0.01	0.00	0	-. 11
fng	.23	-. 07	0.05	0.06	01	03	0.14	0.76	0.02	0.04	0.11	0.14	0.11	0.0	0.09	-. 23	-. 07	. 17
Sr8	. 09	0.04	n. 03	12	. 28	-. 15	-. 12	0.18	0.09	0.13	0.16	0.0	0.09	0.08	-. 01	0.02	0.02	0.17
SOB	. 71	17	15	03	21	.12	0.10	0.15	0.07	0.02	0.06	0.01	0.04	0.04	0.04	. 04	0.0	0.03
Srg	.71	. 07	-. 02	.18	. 15	.11	0.06	0.26	0.21	0.10	0.11	-. 07	0.10	-. 01	0.03	-. 02	-. 06	-. 03
SOG	. 04	. 07	0.04	. 20	-. 31	. 15	0.05	1.23	0.29	0.13	0.09	0.23	0.12	0.07	0.35	0.05	0.03	-. 12

unipolar scale nt. 93

	11	21	31	41	51	61	1	B)	$9)$	(10)	(11)	1131	(14)	(15)	$(16)$	(12)	(17)	(18)
Fra	-. 01	-. 00	-. 02	0.0	0.07	-. 06	-. 03	-. 02	0.05	-. 04	-. 14	0.0A	-. 04	0.0	-. 01	0.16	0.07	0.01
fin	14	-. 03	n. 26	0.26	0.05	16	0.08	0.04	0.03	0.11	0.06	0.23	0.22	0.14	0.08	0.02	22	-. 07
frg	. 04	$\cdots 02$	0.03	0.31	20	0.05	02	0.07	0.02	.0A	-. 06	0.27	0.07	0.12	0	0.09	. 06	0.09
Fin	-. 01	n.7n	0.19	0.17	. 14	. 24	08	0.06	0.09	0.06	0.0	0.25	0.16	0.20	-. 01	0.18	0.0	0.14
P	0.75	n. 04	05	0.04	17	16	. 04	0.11	0.05	0.11	0.05	0.04	0.05	0.08	0.0	0.18	. 03	0.17
Sn's	98	. 16	-. 03	0.05	16	. 07	0.01	0.06	-. 05	-. 03	0.0	-. 07	0.19	0.0	0.06	0.12	-. 18	0.10
Srg	13	5	n.0n	$-.75$	09	18	0.01	0.10	0.13	0.17	0.01	0.0	0.01	0.04	0.15	-. 04	0.07	0.10
sig	.nn	$\cdots$	ก.	0.20	-.03			.	-.04	. 0	-. 01	0.1	0.14	0.08	0.0	0.04	. 04	0.10

unipolar scale nh. 94

	11	21	3)	41	51		71	8)	191	$(10)$	1111	(13)	(14)	(15)	(16)	(12)	(17)	(18)
Fre	0.13	0.20	0.02	0.09	0.06	. 20	-.17	0.74	-. 17	2.07	0.30	0.36	0.14	0.12	0.07	0.30	-. 06	0.06
FIR	0.15	0.23	0.09	-. 02	0.03	36	-. 23	0.08	0.0	0.23	0.34	0.33	0.12	0.08	0.09	0.23	0.15	0.05
frg	0.16	0.12	0.09	0.16	-. 14	09	23	0.08	0.09	0.13	0.33	0.32	0.13	0.14	0.20	0.41	0.09	0.22
Fng	0.19	0.17	0.35	.30	c. 13	36	30	-. 12	-. 10	0.26	0.11	0.45	0.18	0.09	0.17	0.45	0.13	0.24
SYA	0.15	0.22	01	-. 09	0.0	39	29	0.19	.07	0.35	0.48	0.11	0.29	0.17	0.0	0.37	05	0.32
Sot	0.13	0.17	0.05	09	0.19	38	. 20	0.13	-. 17	0.27	0.52	0.24	0.26	0.25	0.07	0.30	. 14	0.34
SYG	-. 01	0.0	0.01	-. 04	-. 14	-.38	-. 22	0.30	0.18	0.31	0.39	0.09	0.29	0.32	0.06	0.15	. 02	0.19
Sog	0.01	-. 10	-	c. 01	0.01	-. 26	.	0.37	0.02	0.17	0.24	0.10	0.25	0.16	0.04	0.26	. 01	0.19

unipolar scale no. 95

												P-W						
	(1)	21	31	41	51	$6)$	71	$8)$	191	(10)	(11)	(13)	(14)	(15)	$(16)$	$(12)$	1171	(18)
Fre	0.0	0.14	0.31	0.31	0.02	. 06	-. 17	-. 06	-. 20	0.10	0.32	0.79	0.21	0.44	0.24	0.21	-. 09	0.03
FOA	0.0	0.24	0.50	0.38	0.25	09	-. 28	-. 07	-. 21	0.19	0.41	0.82	0.37	0.52	0.24	0.20	-. 01	0.03
frg	0.02	0.12	0.34	0.43	09	04	.26	11	-. 18	0.07	0.31	0.78	0.24	0.33	0.25	0.20	0.0	0.07
fog	-. 13	0.09	0.38	0.27	. 04	32	10	02	07	0.23	0.28	0.78	0.29	0.43	0.23	0.14	0.05	-.02
Sve	0.3	-. 02	0.21	0.26	0.04	0.04	. 02	-. 01	-. 20	0.01	0.17	0.73	0.06	0.29	0.14	0.13	0.06	0.08
SOb	0.03	0.15	0.32	0.27	0.10	-. 18	14	.03	. 20	0.22	0.33	0.72	0.17	0.29	0.19	0.24	-. 25	-. 10
suct	-. 09	0.07	0.29	0.39	0.05	0.02	-. 12	-. 07	-.11	0.25	0.22	0.78	0.20	0.37	0.25	0.06	-. 24	.08
Sog	-.	-.	0.1	0.25	0.	0.06	0.07	0.04	7	0.10	0.28	0.69	0.19	0.41	0.19	0.0	-. 23	.11

uvipolar scale no. 96

												P-4						
	11	21	31	$4)$	5)	$6)$		(8)	91	(10)	(11)	(13)	(14)	(15)	(16)	1121	(17)	(18)
Fr:	0.02	0.17	0.29	0.27	0.07	07	16	-. 11	-. 27	0.11	0.11	0.68	0.07	0.39	0.13	0.16	-. 06	0.01
FnB	-. 03	0.20	0.47	0.34	0.09	. 22	32	-. 10	15	24	0.26	0.78	0.27	0.32	0.26	0.04	-0.05	-. 02
Frg	0.05	0.14	0.34	0.32	-. 16	10	17	9	05	0.05	9.18	0.71	0.14	0.23	0.06	0.15	0.18	0.12
FOG	0.96	0.25	0.46	0.29	0.06	-. 41	-. 23	-. 09	. 05	0.28	0.19	0.78	0.30	0.28	0.04	0.34	0.02	0.29
SYA	-..71	0.02	0.16	0.24	0.07	0.17	02	0.03	22	-. 04	0.08	0.55	0.01	0.29	0.09	0.02	-. 11	0.08
So	0.10	0.23	0.27	0.20	0.13	0.02	. 17	-. 20	-. 20	0.24	0.14	0.65	0.12	0.21	0.10	0.20	-. 07	0.04
srg	-. 12	-. 01	0.14	0.32	0.08	0.13	-. 05	-. 08	-. 21	0.11	-. 04	0.69	0.13	0.25	0.0	0.10	-. 10	0.01
SOG	-.i2	5	23	30	0.09	0.04	0.73	-.19	13	0.15	-. 06	0.6	-. 07	0.2	0.1	-. 10	-. 23	-. 10

untoolar scale no. 97

	(1)	21	31	4)	$5)$	61	7	$8)$	91	(10)	(11)	1131	(14)	(15)	1161	$(12)$	$(17)$	(18)
Fra	0.06	n.ft	-.12	-.08	0.07	-. 12	-.07	0.10	. 09	0.11	0.26	0.28	0.28	0.17	0.05	0.29	0.22	0.07
fou	0.nz	0.10	0.23	0.04	n. $2^{5}$	-.17	.21	-. 22	23	0.23	0.20	0.55	0.23	0.18	0.09	0. 31	0.20	0.11
cur,	2.36	C. 2 A	C. 31	0.24	-. 17	-.17	-. 30	-. 19	.10	0.25	0.31	0.52	0.19	0.21	0.18	0.32	0.15	0.22
ris	0.15	n.? ${ }^{\text {a }}$	0.24	0.24	0.12	-. 17	22	-.17	. 05	0.23	9.16	0.42	0.31	0.22	0.15	0.31	3.22	0.06
sym	$n .74$	0.0 n	n. ${ }^{\text {n }}$	0.11	n.??	. 07	07	0.02	17	.	0.17	0.1*	0.04	-. 01	-. 01	0.14	0.17	0.12
¢7\%	n.19	0.05	n.o?	. 5	0.73	04	. 09	0.0	-.1a	0.0	0.12	0.13	0.08	0.06	0.11	0.29	-. 04	0.23
suc.	n.14	n. 11	-.97	n?	-..n1	1.	-. 10	0.01	-. 11	0.19	0.21	0.20	c. 24	0.16	0.0	0.29	0.10	-. 02
sis.	-.ns	a.nk	-. ${ }^{1}$	$n .7$	n.04	-.07	C .06	0.01	-. 06	0.11	-.02	0.15	-. 12	-. 01	-. 01	0.09	0.11	0.03




 たがずずニニュ゚ロ
 むัå． iiioioi
 Ziiiiioif气㐅⿸尸口
 こioboobio
 まioiorioi


 －iiiói；
 －ócóóó
 －oicoiojco
 －íciogeỏo
 －cieioioio


－iiii；iii
ニペニペ゚̃ニジ
－iiai；i；i



 シャ゚



幺ิす゚



すご品さミローロ゚～～

－oioii：ois
－ivo finiof
－u気：

 －ioioioi



 こiiotióo


－Miouro






－oioi；oi
 －icoi：oj
ज゙ロ゚ロロロ゚ロロ －oioioioio

－0ioioi
 －i；iöcico

－cioicioio
 －icio்ici




こioioifo


こoioioioi
ジ


＝ioioioio





－iiioiic
zaçacay
デ8

－iますiojó
untomat scate no．ios

ことざとをこことも


$-\dot{c} \dot{c}^{\circ} \dot{C}$
EE8：
UVIPORAQ SCALF NU． 106

	111	2	31	4）	（ 5）	（ 61	71	（ ${ }^{\text {a }}$	$(9)$	（10）	111）	（13）	$(14)$	（15）	$(16)$	（12）	（17）	（191
Fra	－．46	－． 36	－． 25	0.08	0.09	0.14	0.41	0.73	0.01	－． 26	－． 04	0.04	0.0	0.0	0.02	－． 27	－． 09	－． 28
Fip	－． 23	－． $1^{\text {A }}$	－． 26	－． 11	0.01	0.13	0.22	0.30	－．n4	－． 18	0.05	－． 04	0.02	0.03	－． 17	0.03	09	－． 07
frg	－． 15	0.0	0.0	0.03	0.91	0.14	0.07	0.10	－． 04	－． 21	0.07	0.12	－． 12	0.08	0.05	－． 17	． 06	． 16
fig	－．19	－． 32	－． 19	－． 22	－． 01	0.20	0.34	0.45	0.08	－． 42	－． 07	－． 14	－． 20	0.01	－． 04	－． 17	－． 02	－． 06
Sra	－． 49	－． 33	－． 70	0.09	0.0	0.22	0.43	0.19	－． 04	－． 44	－． 13	－． 05	－． 12	0.08	－． 04	－． 36	－． 14	－． 20
509	－． 30	－． 31	－． 50	－． 08	－． 16	0.22	0.40	0.29	－． 08	－． 20	－． 10	－． 15	0.01	0.01	0.01	－． 06	－． 15	－． 11
srg	－． 37	－． 33	． 25	－．11	0.09	9.23	0.40	0.23	－． 09	－． 37	－． 04	－． 03	－． 11	－． 03	0.01	－． 17	－． 07	－． 16
sog，	－． 10	－． 29	－． 05	－． 02	0.12	0.18	0.12	0.14	－．14	－． 41	0.04	－． 03	0.06	0.07	－． 11	－． 12	－． 11	－． 01

untpular scales
UNIDOLAR SCALE NO． 107


Eiiiiiiii		
№ํ읔ㅇㅇ      ziiiiiiio   こoooㅇoooㅇ		
		ニNNONNONO  
こoióoioi		읔Numon =0000i:io
		こ゚ざがれだが。二éoćócićc：
		ご000000000
  －iooiiiii		－ói iósini
  $-0^{\circ \circ} 0^{\circ \circ} 0^{\circ \circ} 0^{\circ \circ} 0^{\circ}$		
  $-000000^{\circ 0} 0^{\circ}$		
－OMNOONN～   －00000ㅇㅇㅇㅇㅇㅇㅇ		
  $-0 i 0^{\circ} 0$ ió		
		－ióóioio
	$\stackrel{8}{\square}$	
べmN゙N	$\stackrel{\square}{2}$	$\bar{\sim}$
iriirii	$\stackrel{\text { ¹ }}{\text { ¢ }}$	
－itiiiii	$\stackrel{\sim}{4}$	－•••••
 	$\frac{\square}{3}$	

UNIPOLAR SCALE NO.110 $x$

	11	21	31	$4)$	( 5)	61	71	( 61	193	$(10)$	1111	(13)	11	(151	(16)	$(12)$	1171	(18)
FrB	0.02	0.09	0.10	0.04	-. 04	-.00	-. 03	0.11	0.11	0.13	0.02	0.09	-. 04	-. 10	-. 07	0.11	0.07	0.07
f0b	0.09	0.09	-. 02	0.07	.11	-. 02	0.02	0.17	0.06	-. 01	0.06	0.06	0.16	0.09	-. 01	0.14	-. 01	0.0
frg	-. 04	0.09	0.20	0.14	. 04	-.08	0.0	-. 09	-. 14	0.14	-. 13	0.25	0.16	0.16	0.02	0.04	-. 07	. 08
fgG	-. 06	0.08	-.14	0.0	0.64	0.02	0.15	0.08	0.04	-. 04	0.05	-. 03	-. 07	0.07	0.12	-. 0	0.02	-. 08
Srs	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
S38	-. 0.78	-. 20	-. 34	-. 16	-. 13	0.10	0.23	0.21	0.02	-. 06	-. 03	-. 08	-. 06	-. 02	0.05	0.06	-. 12	0.07
Srg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sng	0.0	0.0	0.0	0.9	0.	0.	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

untpolar scale no. 111

	11	121	3)		( 51	6)		8)	91	110	111	113	1	(151	116	112	117	$8)$
Fre	. 09	-. 26	55	19	0.07	0.11	0.30	0.39	0.08	-. 20	0.05	-. 02	0.02	-. 09	-. 05	0.06	0.12	08
B	-. 15	0.0	-. 34	-. 13	03	0.02	0.18	0.17	0.08	-. 04	0.0	0.03	0.22	0.11	0.03	0.06	0.07	-. 10
frg	. 05	0.06	22	11	04	0.04	0.03	0.13	-. 01	0.05	0.10	-. 03	0.17	0.11	0.02	0.04	0.09	10
FOG	-. 09	-. 08	2?	-. 12	0.06	0.11	0.24	0.25	0.01	-. 20	0.08	-. 02	0.04	0.0	-. 07	0.04	0.03	-. 09
SYA	0.10	0.07	08	. 20	. 10	-. 23	-. 07	0.27	0.18	0.31	0.10	0.0	0.17	0.10	-. 04	0.16	0.15	0.24
STA	0.08	0.04	25	. 23	02	.23	0.08	0.19	0.20	0.25	0.18	0.01	0.15	0.0	0.01	0.04	0.04	0.21
SrG	0.0	0.0	21	16	16	-. 05	0.11	0.18	0.09	0.09	0.19	-. 13	0.01	-. 12	0.05	-. 02	0.09	-. 05
SOG	0.02	0.0				0.06	0.10	0.05	-. 10	-. 05	0.15	.	. 2	0.10	-. 03	.	0.	-. 11


	11	23	131	$4)$	5)	$6)$	71	8)	91	$(10)$	(11)	[131	1141	115	(16)	1121	117)	181
FYB	-. 15	-.14	-. 21	-. 25	-. 09	-. 27	0.03	0.23	0.17	-. 03	0.04	0.0	0.22	-. 02	-. 05	-.08	c. 10	-. 05
$f 08$	-. 02	09	15	-. 23	23	.17	0.16	0.19	0.21	0.06	-. 03	0.03	0.03	0.04	0.06	0.0	0.02	. 04
frg	0.0	0.0	0.0	0	0.0	$0 . \%$	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
fog	0.09	10	07	12	05	0.02	. 05	0.13	0.03	. 08	0.01	-. 05	0.12	.12	-. 10	-. 05	0.01	0.04
SYA	-. 15	09	12	-. 03	.13	-. 02	0.12	0.04	0.06	-. 07	0.03	0.04	-. 02	. 06	-.11	-. 04	0.11	0.05
SOA	-. 08	18	15	-. 20	.23	-. 03	0.11	0.19	0.25	0.02	0.02	-. 04	-. 14	09	0.11	0.01	-. 05	0.06
SrG	-. 20	-. 20	-. 26	-. 10	11	0.08	0.25	0.35	0.05	-. 21	0.0	-. 11	13	. 06	-. 04	-. 06	06	. 03
SOG	0.02	0.0	0.09		-. 08	10	02	0.20	0.20	0.0	0.	0.04	-. 04	0.10	0.1		07	

unipolar scale no. 113

	111	21	31	41	5)	161	7	( 81	9)	$(10)$	(11)	(13)	(14)	(15)	1161	(12)	1171	1181
Fra	-. 09	-. 22	-. 16	-. 21	-. 25	-. 19	0.10	0.36	0.40	0.05	0.05	-. 34	0.0	0.03	-. 03	0.02	-. 01	-. 05
$\mathrm{FOP}^{4}$	0.74	-. 27	0.05	11	29	21	0.03	0.44	0.42	0.01	0.01	0.12	0.13	-. 02	0.08	-. 01	0.01	. 14
frg	0.10	-. 11	0.01	0.16	-.30	-. 27	-. 05	0.19	0.38	0.14	0.07	0.19	0.23	0.16	-. 03	0.21	-. 02	0.19
fing	11	-. 07	0.9	0.19	15	18	-. 04	0.20	0.39	0.0	0.08	c.19	0.06	0.13	03	0.12	0.16	0.08
sra	-. 29	-.1R	.01	-. 27	.31	. 14	0.07	0.29	0.32	0.04	0.15	0.11	-. $0^{7}$	-. 07	. 02	-. 01	0.19	0.08
574	-.n7	-.??	-. 14	.11	-.19	10	2.06	0.21	0.34	0.0	-. 06	14	-. 07	-. 07	. 03	-. 01	0.03	0.13
Sre:	$-.16$	-.23	-. 11	.27	-.4?	74	0.09	0.35	0.49	4.04	-. 06	$-12$	0.03	$-.03$	- -14	0.04	-. 04	0.11
Sus,	0.07	-. 07	-. 17	-. 23	-. $2^{5}$	$\cdots$-.no	0.03	0.76	0.28	0.02	-. 10	-. 08	0.06	0.0	0.09	0.02	-. 03	0.08

UNTOOLAO SEALF VOI.114

	11	2)	3)	41	51	( 61	( 71	( ${ }^{\text {a }}$	$9)$	1101	(11)	(13)	(14)	(15)	(16)	(12)	(17)	(18)
fre	-. 06	-.04	-. 15	14	-. 10	-. 10	06	0.11	0.0	0.07	6.23	0.26	0.12	0.03	0.04	0.28	0.16	0.22
F)8	0.10	0.22	0.07	, $\gamma$	0.12	11	13	04	12	0.10	0.31	0.28	0.01	0.09	0.05	0.31	0.20	0.17
frg	0.17	0.14	0.10	0.73	-. 10	04	24	-. 16	-. 06	0.21	0.23	0.20	0.18	0.02	0.09	0.40	0.17	0.29
fng	0.04	0.10	0.21	33	.11	. 21	. 16	-. 06	-. 05	0.12	0.07	0.41	0.24	0.25	-. 03	0.32	0.12	0.19
Srb	0.09	0.19	0.11	04	07	18	22	. 08	. 16	0.20	0.26	0.33	0.12	0.08	0.09	0.26	0.18	0.25
SOB	0.10	0.10	0.01	-..n2	0.09	-. 12	08	-. 06	-. 23	0.05	0.36	0.27	0.12	0.09	0.13	0.17	0.01	0.05
Srg	-. 03	-. 05	-. 08	-.06	-. 10	-. 12	-. 02	0.21	0.16	0.08	0.17	0.36	0.16	0.11	-. 05	0.16	0.09	0.04
59 g	0.20	0.11	-. 14	-. 17	.17	-. 25	-. 16	0.15	-. 04	0.13	0.07	0.09	0.07	-. 04	-. 02	0.36	0.17	0.27

untpolar scale no. 115

	$1)$	$2)$	3)	4)	5)	6)	7	8)	$9)$	(10)	(11)	11	11	(15)	(16)	(12)	(17)	(18)
Fr	0.05	-. 10	-. 06	-. 30	-. 31	-. 27	-. 01	0.31	3.35	0.20	0.12	0.10	0.09	0.01	-. 01	0.11	0.05	0.03
FO8	-. 06	-. 28	0.13	. 08	24	23	0.05	0.26	0.22	0.01	-. 04	0.18	0.12	0.0	0.10	0.0	. 04	-. 08
Frg	0.19	0.0	0.08	0.92	15	74	08	0.04	0.17	0.21	0.11	0.21	0.08	0.09	0.09	0.16	0.18	0.18
F9G	0.05	-. 03	0.12	0.18	01	29	-. 02	05	0.25	0.25	0.06	0.24	3.05	0.03	0.01	0.09	0.03	0.11
5 Sb	-. 02	0.01	0.04	-. 17	-. 25	. 20	. 08	0.18	0.26	0.19	0.04	0.05	0.0	0.02	-. 01	-. 03	0.04	0.18
SOP	-. 04	-. 24	-. 03	19	37	21	. 04	0.28	0.47	0.26	0.03	0.03	-. 02	-. 07	0.08	0.0	0.05	0.21
Sr	-. 07	0.03	-. 02	-. 24	. 26	-.37	-. 10	0.32	0.28	0.24	0.13	0.03	0.04	0.07	0.03	0.10	0.01	0.19
SOG	0.03	0.04	0.07	-. 15	-. 23	08	-. 05	0.18	0.20	0.10	0.05	0.12	0.13	0.05	0.13	0.08	-. 09	-. 05

unipolar scale no. 116

	111	2)	3)	$4)$	5)	( 61	7)	( 81	( 9 )	(10)	(11)	(13)	(16)	(15)	(16)	(12)	1171	1181
frb	-. 08	-. 07	-. 09	-. 01	0.07	0.13	0.11	0.13	0.03	-. 11	-. 11	0.05	-. 06	0.05	-. 03	-. 07	-. 02	-. 12
fun	-. 11	-. 10	.01	0.09	0.03	-. 12	0.03	0.16	0.16	-. 24	0.09	0.14	-. 01	0.06	. 03	-. 05	. 05	0.02
frg	0.06	-. 13	-. 16	06	-. 01	-. 08	0.02	0.18	-. 03	-. 11	0.15	0.11	0.11	0.05	0.04	0.04	0.04	0.09
fog	-. 16	24	03	07	.13	-. 10	0.07	0.74	0.08	13	0.17	0.06	0.13	-.01	0.0	0.0	0.09	-. 08
sra	-. 10	0.04	-. 06	0.04	0.05	0.06	0.07	0.07	-. 11	-. 21	0.06	0.02	0.15	-. 06	0.02	0.03	0.05	-. 04
SO9	0.01	0.08	0.01	0.03	0.04	0.02	-. 08	-. 03	-. 06	-. 06	0.05	-. 05	0.05	-. 02	0.05	-. 07	--12	0.16
Srg	-. 06	0.04	-. 11	0.04	-. 01	-. 02	. 08	0.06	0.02	-. 01	0.0	0.04	0.02	0.08	-. 01	0.03	. 05	0.04
Sog	O.08	0.0	0.01	0.01	0.0	-. 03	-. 10	0.01	0.04	-. 11	-. 06	-. 06	0.04	0.04	-. 04	0.10	0.07	-. 12

uvipolar scale no. 117

	$1)$	21	1 3:	4)	3)	6)	7	9)	91	(10)	(11)	(13)	(16)	(15)	(16)	(12)	1171	(18)
Fra	-.02	-. 15	-. 01	0.01	0.02	0.09	0.13	0.17	0.14	-. 04	0.02	-. 06	-. 03	-. 03	0.02	-. 02	0.07	-. 11
Ffr	$0 .!1$	0.07	0.11	05	-. 09	-. 03	-. 08	. 05	0.11	0.11	0.0	0.03	0.06	0.08	-. 02	0.07	. 02	. 02
FYg	-. ${ }^{4}$	-. 10	-. 27	-. 10	-. 01	0.62	0.01	0.16	0.08	-. 11	0.19	-. 03	0.07	0.01	0.01	-. 07	0.04	-.07
H5\%	-. 19	-. 07	0.03	15	-. 11	0.07	0.0	0.24	0.70	-. 31	0.12	0.02	0.15	0.08	0.04	.07	0.03	0.01
sra	0.02	-.nt	n. 06	-. 78	-. 40	-. 29	15	0.30	0.29	0.24	0.14	-. 12	-. 07	-. 15	-. 12	. 06	0.14	-. 02
59 ¢	ก. 34	$\cdots 07$	0.03	0.16	-. 09	0.03	07	0.11	0.07	-. 10	0.08	-. 01	0.0	0.04	-. 04	0.0	0.13	0.05
srg	0.07	-. 12	09	18	-. 70	$-11$	. 09	0.12	0.31	0.10	n. 09	04	-. 05	-. 05	0.03	0.14	0.14	0.04
¢0.	3.72	-.07	. 06	.74	-. 09	C. ${ }^{3}$	0.06	0.10	C.17	-.ก9	-.17	. 0	-. 11	99	0.04	0.13	0.07	0.08

unidolar scalf no.ita

	$1)$	21	3)	$4)$	51	61		$9)$	$9)$	1101	(11)	1131	(14)	(15)	(16)	1121	(17)	(18)
Fv8	-.21	-. 33	-. 11	-. 23	-. 14	0.0	0.23	0.39	0.33	-. 04	0.07	0.0	-. 05	0.05	0.05	-. 09	0.08	. 0
$f 08$	$0 .: 1$	-. 23	0.11	0.04	-. 23	-. 22	-. 13	0.13	0.29	0.04	0.08	0.05	9.04	-.01	0.11	0.05	0.18	-. 06
FYG	0.13	0.19	0.0	0.11	-. 19	27	-. 19	-. 05	0.03	0.27	0.13	0.29	0.29	0.18	0.12	0.21	0.14	0.17
FOG	0.0	-. 14	0.05	0.04	0.02	-. 10	0.11	0.11	0.02	0.01	0.10	0.11	0.09	0.10	. 01	0.04	0.02	-. 05
5 Ya	0.11	0.15	0.15	-. 22	17	22	-. 24	0.20	0.17	0.31	0.12	03	-. 04	04	-. 10	0.05	0.15	0.07
508	06	. 35	-. 74	-. 12	-.09	-. 03	0.22	0.30	0.20	-. 04	0.05	-.09	-. 05	-. 03	0.08	0.07	-. 03	0.07
5 SG	-. 02	-. 15	-. 14	-. 15	0.01	-. 12	0.04	0.15	0.01	0.03	0.16	-. 04	0.06	0.17	-. 12	0.09	-. 02	-. 03
Sog	-. 02	.11	-.	0.0	0.05	-. 02	0.06	0.22	0.05	0.07	0.05	-. 02	0.0	0.01	. 05	0.19	0.05	0.08

untpolar scale no. 119

	1)	21	131	41	51	$(6)$	71	8)	91	(10)	111	113	(14)	(15)	11	(12)	1	(18)
Fra	0.07	-. 12	-. 02	-. 35	48	-. 39	-. 11	0.31	0.55	0.30	-. 04	-. 04	-. 12	-. 01	-. 14	-. 01	0.03	0.03
FOB	0.12	-. 02	0.06	-. 07	-. 31	-. 06	-. 03	0.18	0.30	0.06	-. 05	0.01	0.02	-. 11	0.03	0.07	0.01	-. 13
frg	0.98	0.06	0.16	0.18	. 38	-. 23	-. 17	0.02	0.14	0.18	0.03	0.22	0.15	0.13	-. 01	0.17	-. 09	0.25
fog	0.08	0.04	0.16	-. 05	24	.17	. 13	0.04	0.20	0.23	0.05	0.11	01	. 01	0.05	0.11	0.22	0.21
5 Ya	0.15	0.15	$\cdot .07$	-. 29	19	17	-. 03	-. 04	0.20	0.16	0.02	-. 09	-. 01	. 12	0.11	0.01	0.11	0.0
50 B	-. 03	-. 18	. 24	23	8	03	0.01	0.25	0.37	0.08	06	-. 12	. 10	09	0.03	. 09	-. 01	0.17
5 YG	0.03	-. 02	0.11	-. 08	. 43	-. 22	-. 07	0.15	0.30	0.16	-. 05	0.02	0.02	. 08	-. 01	0.08	0.02	0.17
50 G	0.06	0.04		10	20	-. 10	02	0.20	0.29	04	. 08	0.02	-. 01	-. 02	0.03	-. 02	0.01	-. 04

unipolar scale no. 120

	$1 ;$	2)	$3)$	4)	5)	61		8)	$9)$	(10)	11	11	11	115	(16)	(12)	1171	(18)
FVe	0.01	0.05	0.03	0.06	0.13	-. 03	0.01	0.04	-. 11	-. 01	0.06	0.14	0.09	-. 03	0.08	0.05	0.03	0.19
FTR	0.06	--17	0.20	0.07	12	-. 22	13	0.12	0.12	0.02	0.17	0.20	0.09	-. 07	0.13	0.09	0.19	-. 05
FYris	0.09	i.:3	09	0.10	20	. 11	02	0.07	0.14	0.15	-. 13	0.08	0.1i	0.21	0.01	. 05	.11	0.09
F9G	0.05	-..1	0.01	-. 09	-. 12	0.02	0.11	0.11	0.15	-. 06	-. 01	-. 08	0.02	03	04	0.01	-. 02	-. 05
5 YB	0.03	-. 0 ?	0.15	-. 01	0.04	-. 03	-. 10	0.09	-. 10	0.06	0.18	0.03	0.01	04	-. 05	0.21	0.05	0.06
508	0.07	97	-. 03	0.09	0.02	0.02	-. 05	0.02	-. 01	-. 05	0.10	0.03	-. 05	0.04	0.05	0.16	. 02	0.14
SVG	-. 04	. 15	. 15	-. 02	0.04	0.11	0.03	0.20	-. 01	-.08	0.18	0.07	0.18	0.08	0.01	0.13	-.06	0.01
50	-. 73			-.08	0.04	0.02		0.22	0.07		0.03		0.06			0.07		0.06

UNIDOLAR SCALE NO. 121

	11			$4)$	(5)	61	( 71	( 8 )	9	1101	111	13)	(14)	151	$16)$	(12)	1	1181
Frr	-. 10	.11	. 25	, 19	0.05	0.0	0.08	O.0A	3.07	. 05	0.10			0.04	c. 02	-. 06	05	0.02
fira	-. 79	. 25	14	. 19	-. 12	-. 03	0.12	0.34	0.25	0.02	-. 04	-. 03	0.10	-. $0^{\text {t }}$	0.12	. 02	0.04	. 02
frot	-. 05	14	19	. 06	0.0A	n.f7	0.09	0.17	-. 01	-. 13	0.11	0.0	-. 01	0.0	0.04	1	. 08	. 02
F)	0.72	-. 10	. 02	. 79	90	-. 10	0.02	7.01	0.10	0.07	0.15	0.14	0.0	0.03	. 03	. 01	0.10	. 05
Sy\%	0.36		. $n$	.13	17	7.n	0.0	0.17	-. 11	. 0	0.12	0.01	0.03	-. 02	. 03	. 07	0.05	0.08
5	-. 37	If	21	$\cdots{ }^{-01}$	14	-nか	. 13	0.72	0.07	.93	0.09	0.05	0.01	0.01	0.03	0.07	-.08	0.04
Sra			15	$n .14$	14	-. 13		0.7	-. 12	. 5	0.06	0.13	0.12	0.18	. 09	0.67	-. 13	-. 09
spr	12	-. 24			0.0			n.ph	3.03	-. 17	0.06	0.04	0.11	0.02		0.11		

## UNIPOLAR SCALE NO.1/?


untpolar scale no.i23 X


Unigolar scale no.124

	$1)$	$2)$	3)	43	51	(6)	1	81	(9)	(10)	1118	1131	1141	11	1161	$(12)$	1171	11
Fra	0.19	0.03	0.01	-. 21	-. 37	. 41	19	0.19	0.40	0.34	0.12	0.07	0.03	0.03	-.10	0.21	0.16	$0 \cdot 0$
FOB	0.12	0.0?	0.17	-.19	25	78	23	0.19	0.30	0.23	0.16	0.22	0.09	-.08	0.13	c. 12	0.20	0
frg	0.25	0.16	0.12	0.07	29	23	28	0.3	0.25	0.32	0.10	0.22	0.15	0.09	0.12	0.25	0.15	0.2
F3G	0.10	0.10	0.30	0.03	20	. 27	-. 19	-. 01	0.18	0.27	0.05	0.26	0.17	06	0. 01	0.19	0.23	0.2
STB	0.7	-. 01	0.05	-. 26	23	.27	-. 19	0.27	0.30	0.22	0.17	0.02	0.01	. 06	0.05	0.06	0.13	0.1
SOA	-. 08	.27	-. 17	. 22	23	14	0.08	0.19	0.25	0.16	0.06	0.01	-. 14	. 06	0.08	. 01	$-.07$	0.1
SrG	-.01	ก.07	. 01	.16	. 41	. 40	. 11	0.17	0.46	0.28	0.14	-. 15	0.13	0.0	-. 02	0.07	0.08	0.1
snc.	0.11	-.07	2	-. 18	. 36	. 27	. 05	0.28	0.24	0.20	0.10	-.14	0.09	-. 0	-. 02	0.05	0.14	

UNIPOLAR SCALE NIT. 125

	(1)	7)	3)	( 4)	( 5)	( 6)	( 71	( 8 )	(9)	(10)	(11)	(13)	(16)	(15)	1161	(12)	1171	(18)
fra	-. 03	c.0	-. 27	-. 02	0.07	-. 06	0.02	0.06	. 15	0.09	0.06	0.28	-. 07	0.0	0.05	0.32	0.21	0.09
F.29	. 04	n. 23	2.06	0.17	0.13	-. 09	. 11	-. 09	26	0.13	0.31	0.48	0.23	0.21	0.04	0.27	0.09	0.10
fra	9.01	0.03	0.19	0.20	-. 16	14	-. 10	0.02	. 05	). 08	0.21	0.47	0.16	0.27	0.06	0.21	0.15	0.15
Firs	0.73	9.19	3.19	0.24	0.07	30	-. 15	-. 07	12	0.20	0.0	0.48	0.37	0.13	-. 03	0.37	0.17	0.14
sra	-. 98	0.02	n. 0	0.01	0.0	06	0.01	0.24	.16	3.06	0.10	0.27	0.14	0.15	0.05	0.20	0.0	0.15
Sta	31	O.nR	0.11	0.04	0.23	01	-. 05	0.02	-. 32	3.02	0.17	0.26	0.04	0.16	0.02	0.25	-. 09	0.1A
¢r	-. 1 t	on	-.1A	c. 31	0.01	-. 15	0.01	0.17	0.04	0.09	-.04	0.7A	0.19	0.18	-. 03	0.14	0.02	0.13
¢nc.	-. 3 \%	-.11	-. 12	0.72	0.09	0.05	0.01	0.23	23	-. 14	0.12	0.08	0.07	0.02	-. 12	0.18	0.0	0.22

untpolar scalf no. 120

undpolar scale no. 127

	$1)$	$2)$	31	4)	51	61	7	A)	9)	(10)	(11)	(13)	$(14)$	(15)	1161	(12)	417	(10)
A	0.07	0.01	0.02	-. 18	-. 27	-. 32	-. 19	0.10	0.29	0.27	-. 03	0.03	0.0	0.0	-. 11	0.10	0.13	0.13
for	0.14	-. 08	0.13	-. 03	18	13	. 15	0.09	0.29	0.05	0.08	0.12	0.08	. 05	0.06	0.08	0.13	0.04
fyg	0.08	0.11	0.02	-. 01	28	20	. 12	-. 02	0.25	0.21	0.	0.07	0.	0.0	0.	0.19	0.07	0.16
fog	0.13	-. 02	0.04	0.06	10	19	09	0.01	0.20	0.19	-. 03	0.15	0	0.0	-. 09	0.16	0.09	0.16
SYa	-. 03	. 03	0.10	-. 32	41	33	-. 13	0.24	0.32	0.28	0.22	0.07	-. 01	--11	-. 03	0.01	0.21	0.0
sob	-. 07	30	-. 12	18	23	13	0.01	0.27	0.36	0.10	0.0	-. 14	-. 06	-. 10	0.01	-. 05	-. 04	0.09
SVG	-. 04	. 02	0.09	-. 05	26	. 30	. 17	0.22	0.41	0.27	0.11	0.01	0.13	0.10	-. 02	0.03	-. 03	0.12
506	0.14			24			04	0.35	0.24	0.16	0.03	0.03	-. 03	-. 01	0.05	0.06	0.08	0.14

## N



stpolar scale no. 3

									P-W									
	111	21	31	141	5)	161	71	181	91	1101	111	1131	(16)	(15)	1161	1123	1171	8181
FY8	-. 98	-. 24	-. 05	-. 28	33	-. 17	0.08	0.34	0.70	0.10	-. 02	0.17	-. 19	-. 02	-. 14	-. 20	-. 04	-. 06
F08	0.08	-. 24	-.05	-. 26	-. 44	-. 22	0.08	0.22	0.73	0.05	-. 15	-. 25	-. 14	-. 17	-. 02	-. 12	0.05	-. 09
Frg	0.20	0.03	-. 14	09	. 24	-. 26	-. 03	0.14	0.62	0.16	-. 04	24	0.07	. 11	-. 08	0.07	0.12	0.06
FOG	-. 03	-. 16	-. 14	-. 04	-. 27	0.09	0.07	0.14	0.69	-. 05	-. 04	-. 18	-. 20	-. 09	-.09	-. 03	0.07	0.08
Sve	-. 06	-. 17	0.10	-. 22	. 43	-. 24	-. 01	0.12	0.75	0.10	-. 03	-. 09	-. 03	-. 19	0.0	-. 26	0.03	-. 07
Sn8	-. 07	-. 22	-. 12	-. 22	-. 57	-. 29	0.04	0.28	0.78	0.27	-. 16	-. 15	-. 06	-. 23	0.03	-. 11	0.06	0.0
Srg	0.04	-. 12	-. 03	-. 32	. 55	-. 31	-. 07	0.30	0.71	0.26	-. 07	-. 18	0.0	-. 20	-. 01	0.07	0.04	0.20
Sog	-..n1	-. 12	-. 09	-. 71	-. 40	-. 14	0.02	0.24	0.72	0.16	-. 12	-. 13	0.0	0.02	0.18	-. 13	-. 08	-. 08

bidolar scale no. 5

							P-W											
	$1)$	2)	3	,	5	161	71	$8)$	$9)$	10	111	(13)	,	125	116)	(12)	117\%	(18)
Fr	-. 36	s9	38	-. 03	0.12	0.40	2.87	0.49	0.05	. 60	-. 11	. 10	0.01	0.03	0.06	. 46	-. 33	-. 30
$F 58$	-.67	5n	33	0.73	0.11	0.28	0.86	0.25	0.01	. 50	-. 31	-. 19	0.0	0.15	0.02	42	3	31
frg	-. 65	74	40	.12	0.06	0.40	0.93	0.61	-. 06	-. 66	39	16	.19	0.07	. 27	. 45	31	42
F7G	-.68	-. 75	44	-. 15	-. 13	0.29	0.90	0.60	0.20	-. 46	. 21	-. 18	14	0.07	-. 04	. 52	. 28	-. 34
Svi	St	72	4 ?	0.13	0.12	0.51	0.91	0.27	-. 03	. 65	-. 28	0.02	-. 21	0.03	0.01	. 42	. 16	23
SOS	. 64	57	-. 35			0.29	0.86	0.34	-. 01	44	-. 23	-. 11	0.03	0.03	-. 10	-. 24	. 27	-. 22
Syt.	-.tr	-. 69	-. 19	-	0.10	34	0.91	0.36	-. 07	-. 52	-. 25	-. 0.5	. 06	-. 01	-. 05	.41	. 2	- 20
Snf.	-. 70			-. 11	0.10	n. 31	0.93	0.33	0.07	-. 47	-. 03	0.1	-. 07	0.1	0.02	-. 4	. 2	. 3

atoglar scale vo. a b

								p-w										
	111	21		$4)$	51	6)	71	( 81	91	(10)	(11)	113)	(14)	(15)	(16)	(12)	1171	1181
fra	-. 44	-. 62	-. 50	-. 25	-.1n	0.04	0.57	0.91	0.32	-. 34	0.04	-. 11	-. 04	0.03	0.06	-. 26	-.17	-. 20
for	-. 30	-. 56	. 25	-. 21	11	n. 04	0.42	0.90	0.35	-. 29	-. 07	-. 10	0.10	-. 02	0.13	.18	-.11	. 10
crg	-. 50	-. 68	-. 44	-. 08	-. 09	0.22	0.68	0.90	0.14	. 51	-. 10	-. 04	. 06	0.12	-. 13	-. 26	-. 20	29
Fers	55	64	41	-. 26	. 24	0.22	0.65	0.92	0.22	-. 52	-. 04	-. 12	.07	0.07	-. 04	-. 41	-. 21	20
sya	-. 37	35	34	20	-. 12	-.08	0.24	O.ta	0.19	-. 10	0.10	-. 12	0.13	0.0	-. 11	-. 02	-. 08	-. 02
SOR	-. 29	. 54	-. 50	-. 30	.1s	0.77	0.38	0.91	0.20	-. 24	0.09	-. 17	0.16	0.07	0.02	0.02	-. 18	0.04
Svg	-. 49	. 49	-. 33	36	22	-. 18	0.31	0.90	0.40	-. 13	0.18	-. 10	0.15	0.25	0.0	-. 22	-. 22	-. 06
576.		. 52	25	00	16	-. 23	0.29	0.85	0.23	-. 11	0.04	-. 05	0.16	0.11	-. 12	-. 22	.17	-. 04

bTPDLAR SCALF NO. 7

									P-N									
	111	131	131	14	51	61	171	81	( 91	1101	(11)	1131	(16)	(15)	(16)	(12)	(17)	1281
FYa	.17	-. 36	-. 16	-. 38	. 50	-. 28	0.10	0.37	0.76	0.09	0.07	-.12	-. 1	0.01	0.05	-. 13	-. 03	0.02
F08	27	19	-. 24	23	. 35	25	0.17	0.33	0.69	0.02	-. 05	-. 13	. 09	-. 03	01	22	. 11	07
FYG:	. 17	07	-. 11	12	42	-. 30	0.04	0.23	0.75	0.14	0.13	0.09	0.01	0.09	-. 06	-. 10	0.05	0.03
FOG	.31	20	0.05	6	46	-. 15	n.11	0.22	0.75	-. 01	0.09	0.23	0.16	-. 03	0.02	. 09	09	-. 02
SYR	21	-. 20	-. 12	-. 3 .	53	. 30	0.08	0.28	0.74	0.16	0.10	-. 10	0.05	0.01	0.03	-. 17	. 03	0.07
SOB	. 36	-. 12	-. 07	. 40	-. 58	43	-. 07	0.14	0.82	0.28	-. 10	-. 05	-. 02	-. 18	-. 02	-. 25	0.16	0.01
suc	.27	3 n	0.08	25	55	45	-. 02	0.42	0.86	0.23	-. 03	. 09	-. 03	0.0	0.11	-. 31	-. 01	0.10
SnG.	-. 11	-. 03	-. 01	-. 24	48	. 30	0.16	0.24	0.79	0.13	-. 0	-. 0	0.05	-. 04	0.09	-. 07	0.04	-

btpolar scale no. 9 b

	1	131	$3)$	$4)$	51	( H	171	(8)	( 91	(10)	11	(13)	(14)	(15)	$(16)$	(12)	(17)	(18)
fra	0.56	0.55	0.36	-. 78	-. 13	41	68	4	0.01	0.54	0.04	0.09	0.03	-. 01	-. 07	0.30	0.42	0.27
F	0.48	0.55	0.49	0.14	10	30	-. 75	. 45	-. 0	0.52	0.31	0.32	0.14	0.0	0.05	0.32	0.30	0.26
FYg	0.51	C. 71	0.54	0.34	15	-. 48	-. 80	. 66	12	0.68	0.24	0.24	0.18	03	0.15	0.41	30	0.40
fors	2.54	0.55	0.51	0.37	09	41	-. 68	-. 57	08	0.59	0.29	0.34	0.11	0.15	0.17	0.34	0.40	0.20
SYR	0.61	0.59	0.54	05	13	44	71	33	0.10	0.66	0.23	0.09	0.03	. 04	0.09	0.23	0.32	0.20
Soa	0. 30	0.54	0.61	0.17	OR	. 37	73		0.06	0.52	0.20	0.28	0.01	0.04	0.06	0.07	0.18	0.28
Svg	n.49	0.52	0.52	0.26	10	17	69	36	02	0.53	0.10	0.20	0.07	0.	-. 05	0.35	0.35	0.23
SOG	0.44	0.50	0.60	0.42	-. 03	-. 22	. 68	. 34	. 09	0.46	-. 02	0.08	-. 09	0.0	0.12			

gipolar stalf no. 10

		2	31	$4)$	5	6)	7		91	$10)$	111	131	$16)$	15	161	123	17	18
	0.5	0.56	41	.			67		-.n)	56	0.02	0.11	0.01		. 10	. 36	0.5	. 3
	2.53	0.52	0.44	. 06	00	-. 24	. 70	31	.07	. 48	0.29	0.21	0.07	.	0.10	. 4	0.58	0.33
	9.6 ?	0.63	7.49	0.09	13	-. 49	70		0.18	. $n$	0.21	0.18	0.18	16	0.11	0.4	0.4	. 3
	J.	0.58	47	0.21	03	-. 40	. 70	5	. 03	. 5	0.26	0.27	0.00	0	0.1	0.3	0.5	0.2
	n.5?	0.42	34	-. 23	-. 13	. 3		.18	. 11	0.6	0.1	0.01	0	. 20	0.02	0.29	0.5	0.2
	0.46	0. 53	34	10	15	-. 33	. 64	-37	3.14	0.55	n. 11	0.15	08	. 20	0.03	0.16	0.49	0.3
		$0.6 n$							-. 03									
		0.											-. 22			0.4		

bioflar scalk nj. 11

								W										
	(1)	$2)$	3)	$4)$	$5)$	$6)$	73	( 8)	$9)$	(10)	(11)	(13)	(14)	(15)	$(16)$	112)	(17)	(8)
YA	-. 47	. 55	-. 50	. 36	-. 27	-. 02	0.47	0.87	0.41	-. 22	0.12	-.08	-. 03	0.0	-.07	17	-. 05	-. 12
FTA	.19	. 33	23	72	. 18	0.06	0.32	0.87	0.27	-. 19	0.05	-. 07	0.08	0.03	0.07	. 01	-. 03	. 09
fyg	48	55	-. 55	34	. 20	0.21	0.54	0.9	0.21	-. 41	0.0	-. 08	-. 16	0.09	-. 11	-. 24	-. 18	-. 22
for.	-	62	44	36	29	0.21	0.59	0.91	0.29	47	-. 06	16	.17	0.07	-. 13	-. 28	-. 15	02
Sys	39	43	37	34	31	-.07	0.31	0.80	0.33	. 06	0.07	0.11	0.01	-. 04	. 07	0.0	0.07	0.07
STA	. 43	. 44	50	46	38	0.01	0.45	0.83	0.31	-. 09	0.01	-. 15	0.10	-. 07	-. 03	-. 15	-. 11	-. 05
Sro	. 50	54	43	50	32	. 15	0.44	0.84	0.41	-. 17	-.07	-. 05	0.07	-. 06	0.02	-. 22	-114	-. 02
Sog,	-. 19	-. 43	4	5	-. 35	-. 03	0.37	0.77	0.35	-.18	0.12	-. 06	0.11	-. 05	-. 09	-. 01	0.0	. 10

biddar scale no. 14 r

	$1)$	31	3)	4)	5)	( 63	71	8)	91	$(10)$	(11)	(13)	(14)	(15)	(16)	11	(17)	(18)
FYA	-. 41	4 A	58	-. 11	0.08	0.39	0.58	0.49	-. 01	-. 52	0.13	-.27	-. 08	.13	0.05	-. 24	-. 25	-. 19
FOb	-. 16	-. 30	.46	-. 24	0.06	0.42	0.47	0.54	0.07	-. 37	0.06	-. 20	0.01	-. 03	-. 08	0.10	-. 0	-0.05
FYG.	30	37	43	31	0.24	0.49	0.45	0.42	-. 22	-. 53	0.09	19	-. 26	0.05	06	.17	.22	2
fog	-. 40	53	52	43	-. 16	0.48	0.54	0.59	0.11	-.67	-. 13	-. 33	-. 20	0.01	-. 11	. 25	-. 11	-. 19
S Y	-. 31	46	46	. 12	0.13	0.24	0.47	0.33	-. 08	-. 43	0.02	-.08	0.05	-. 12	-. 08	-. 01	-. 10	1
sob	.17	72	-. 44	18	0.08	0.24	0.45	0.49	-. 04	-. 40	0.08	. 25	0.10	0.0	-. 02	0.20	. 06	--08
srg	-. 11	22	43	-. 26	0.20	0.17	0.37	0.26	-. 18	. 50	0.11	-. 28	-. 08	-. 02	-. 06	-. 07	-. 20	. 2
SgG	. 23	39	76	. 3	0.07	0.21	0.42	0.27	02	. 44	0.11	14	0.08	-.08	-. 1	0.0	. 03	. 2

bipolar scale nu. 17

	11		3)	4)	$5)$	$6)$	71	8)	9	10	11	133	14	15)	16	121	17	18
	-. 25	1	19	-. 05	. 02		0.12	0.18	. 10		0	0.32	.	0.1	0.2	01	11	0
FOA	-. 90	12	11	04	13	07	0.22	0.23	. 12	. 10	0.3	0.29	. 4	0.2	0.1	. 03	14	
G	27	17	14	0.03	10	0.13	0.13	0.25	0.0	. 16	0.21	0.3	0.1	0.2	0.1	. 06	1	1
fog	14	04	1	0.0	01	13	0.05	0.18	. 1	-. 0	0.30	0.2	0.3	0.3	0.2	0.0	0	16
sre	37	37	27	0.03	03	.14	. 30	0.40	0	-.?	0.3	0.1	0.3	0.09	0.0	. 06	-. 27	
STR	-. 26	. 10	-. 09	0.12	10	17	0.	0.31	. 15	-. 12	. 28	-. 02	0.38	0.21	0.03	0.07	. 23	
	-. 31	18	22	-. 05	-. 01				. 0			-						


									P-W									
	(1)	2)	$(31$	( 4)	( 5)	( 6.$)$	171	( 81	( 91	(10)	111)	(13)	$(16)$	(15)	(16)	(12)	117	(18)
FYR	0.92	-. 10	-. 08	-.42	-. 56	-. 41	-. 04	0.18	0.75	0.31	0.0	-.11	-. 04	-. 10	0.01	-. 03	0.27	0.06
FTA	-. 01	-.15	-. 04	-.97	-. 61	-. 44	-. 02	0.21	0.77	0.23	-. 10	-. 04	-. 05	-. 08	-. 01	-. 06	0.05	-. 07
frg	$0 . n 6$	0.78	-. 07	-. 12	-. 35	. 40	-. 09	0.03	0.75	0.74	-.07	0.0	0.05	0.04	-. 02	-. 10	0.17	0.03
F3r,	-. 25	-. 26	-. 08	-.10	. 33	. 08	0.20	0.22	0.62	-. 02	-. 11	-. 07	-. 13	-. 11	0.01	-. 13	-. 03	0.0
SYR	-.n2	-.n7	-. 17	-. 46	-. 40	-. 29	0.0	0.29	0.80	0.25	0.0	-. 20	-. 05	-. 06	-. 02	-.18	0.16	-. 03
SOB	-. 24	. 30	-. 19	-.38	-. 52	-. 71	0.01	0.25	0.82	0.08	-. 21	-. 18	-. 11	-. 13	-. 12	-. 26	0.23	0.0
Svrs	-. 23	.28	-. 02	-. 19	-. 54	-. 36	0.01	0.36	0.75	0.05	-.05	-. 06	-. 07	0.04	0.01	-. 29	-. 08	-. 07
sor,	-. 04	-. 10	-. 09	-. 26	. 46	-. 79	0.06	0.72	0.75	0.0n	-. 27	-. 23	0.05	0.06	-. 05	-. 06	0.04	0.01

otpolar scalf no. 19

##  $\begin{array}{llllllllllllllllllll}\text { FOB } & -.51 & -.59 & -.34 & -.25 & -.05 & 0.17 & 0.58 & 0.67 & 0.21 & -.40 & -.12 & -.05 & 0.12 & 0.01 & 0.04 & -.25 & -.23 & -.29 \\ \text { FYG } & -.68 & -.172 & -.53 & -.28 & -.05 & 0.35 & 0.78 & 0.79 & 0.06 & -.65 & -.112 & -.03 & -.12 & 0.14 & -.22 & -.44 & -.28 & -.31\end{array}$  $\begin{array}{llllllllllllllllll}\text { SVA } & -.64 & -.67 & -.51 & -.06 & 0.01 & 0.42 & 0.74 & 0.49 & 0.05 & -.66 & -.18 & -.08 & -.10 & 0.03 & -.06 & -.34 & -.21 \\ \text { SJ8 } & -.32 & -.59 & -.51 & -.31 & -.10 & 0.22 & 0.06 & 0.69 & 0.19 & -.39 & -.03 & -.23 & 0.10 & -.03 & -.02 & -.06 & -.04 \\ \text { SVG } & -.60 & -.65 & -.47 & -.28 & 0.09 & 0.27 & 0.67 & 0.52 & 0.05 & -.61 & -.13 & -.10 & -.07 & 0.03 & -.09 & -.32 & -.32 \\ \text { S }\end{array}$

otpmar scale no. $20 x$


APPENDIX $H^{*}$<br>Adult and Child Component Correlations with the 18 Construct Measures Within Sex-Age-Period (Fall ${ }_{1}$ X Spring) Subgroups

## * Notes for Interpreting the Contents of Appendix H.

1. Numbers used to designate row headings correspond to the construct measures defined in Table 5 of the text.
2. Part-whole correlations are signified by an asterisk.
CORREIATIONS OF 18 CONSTRLCTS WITH COMPONENT: AFFILIATICN-ACULT (IIA)
GIRLS
CLDER

CCNSTRUCT NO.	eors				GIRLS			
	YOUNGER		ClDER		YCUNGER		CLDER	
	FALL	SPRING	FALL	SPRING	FALL	SPRING	FALL	SPRING
( i)	0.18	C. 28	0.13	0.30	0.28	0.27	0.20	0.09
( 21	C. 34	0.25	0.32	0.26	0.36	0.28	0.26	0.10
$(3)$	C. 14	C. 15	0.24	0.14	0.20	0.16	0.20	0.03
$(4)$	0.06	-. 15	0.08	0.10	0.12	0.18	0.12	0.11
( 5)	0.04	-. 06	0.0	0.09	-. 01	0.03	-. C 9	0.11
(6)	-. 12	-. 41	-. 21	-. 22	-. 05	-. 14	-. 33	0.01
$(7)$	-. 30	-. 35	-. 44	-. 25	-. 45	-. 35	-. 35	-. 08
( 8)	-. 10	0.03	-. 06	0.01	-. 19	-. 06	-. 21	0.05
$(9)$	-. 01	0.05	-. 05	-. 10	-. 02	-. 02	0.03	-. 18
(10)	0.21	0.45	0.32	C. 33	0.20	0.34	0.33	0.12
(11)	0.84*	0.90*	0.88*	0.88*	0. 88 *	0.84*	0.88*	0.86*
(13)	C. 29	C. 30	0.38	0.30	0.34	0.29	0.30	0.18
(14)	0.24	0.17	0.31	0.35	0.18	0.27	0.26	0.23
(15)	0.15	0.09	0.16	C. 24	0.106	0.24	0.07	$0 . C 9$
(16)	0.15	C. 14	0.10	0.30	0.38	0.23	0.36	0.28
(12)	0.18	C. 21	0.29	0.12	0.29	0.24	0.19	-. 06
(17)	0.04	-. 03	C. 12	0.03	0.18	0.10	0.27	-. 10
(18)	0.07	0.16	C. 12	0.06	0.12	0.14	-. 12	-. 04

## SIL



$\begin{array}{ll}1 & 1000001 \\ 0 & 000000 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ N & 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}$








ONIVdS

CORRELATIONS OF 18 CONSTRUCTS WITH COMPCNENT: RECGGNITICN SEEXING-ACULT (IID)


$90^{\circ}-$	90．－	10＊－	It－	2100	50．0	$10^{\circ} 0$	عI•0	（81）
$10^{\circ}-$	$\varepsilon 0^{\circ} 0$	$02 \cdot 0$	$91 \cdot 0$	$50^{\circ} 0$	$91^{\circ} \mathrm{O}$	ع1•0	21.0	（2I）
$90^{\circ}-$	$50^{\circ}-$	$50^{\circ} 0$	$20^{\circ} 0$	100－	2100	$60^{\circ}$	$\angle 10$	（21）
$02^{\circ} 0$	$\rightarrow 0^{\circ} 0$	$\rightarrow 10$	81.0	$12^{\circ} 0$	$50^{\circ} \mathrm{O}$	$50^{\circ} 0$	$60^{\circ} \mathrm{O}$	（91）
10．0	$0 \cdot 0$	\＄0．0	$90^{\circ} 0$	ع0．－	$20^{\circ} 0$	20．－	$80^{\circ}-$	（5I）
S200	$\rightarrow 1^{\circ} 0$	2100	ع0＊0	90.0	¢0＊－	$20^{\circ} 0$	$20^{\circ}-$	（ヶI）
ع0．0	$50^{\circ} \mathrm{O}$	$90^{\circ}-$	1100	70．0	910	ヶ0＊－	9105	（EI）
$52^{\circ} 0$	110	$0 \varepsilon^{\circ} 0$	$0 \varepsilon^{\circ} 0$	$82^{\circ} 0$	22＊0	9 F － 0	ヶ¢•0	（ti）
$62^{\circ} 0$	$0 \cdot 0$	$98^{\circ} 0$	210	$8 \varepsilon^{\circ} \mathrm{O}$	$6 \varepsilon^{\circ} 0$	8 C 0	8と・0	（01）
$0 \varepsilon^{\circ} 0$	$10^{\circ} \mathrm{O}$	з ${ }^{\circ} 0$	0ヶ＊	$\rightarrow \underbrace{\circ} 0$	$9 \varepsilon^{\circ} 0$	$20 \cdot 0$	12•0	（6）
$\angle 10$	ع0＊－	31＊0	St＊o	SE＊0	1100	$80 \cdot 3$	EI•O	$(8)$
$90^{\circ}-$	200－	31＊－	EI＊－	$0 \cdot 0$	と10－	ゅで－	210－	（2）
18＊－	21＊－	$8 \varepsilon^{\circ}-$	と1＊－	120－	しヶ＊－	$95^{\circ}-$	22＊－	（9）
！ヶ＊	$22^{\circ}-$	IE＊－	$\rightarrow \underbrace{\bullet}-$	ヶク・－	Lع＊－	く2＊－	とを＊－	（5）
Sto－	$70^{\circ} \mathrm{O}$	12＊－	$81^{\circ}$	なッ＊	8ع＊－	とて＊－	ら20－	（\％）
10.0	110	$\rightarrow 0^{\circ}-$	$\rightarrow$－	$92^{\circ}-$	$10 \cdot 0$	$80^{\circ}-$	$50^{\circ} 0$	（E）
210	$\rightarrow 0^{\circ}-$	$31^{\circ} 0$	を：－	120－	Li0	12＊0	$\rightarrow 100$	$12)$
$60^{\circ} \mathrm{O}$	$0 \cdot 0$	91.0	ع0\％ 0	$21^{\circ} 0$	0190	21.5	ご・0	（1）
9NIYdS 77vy 8ㅋำ		$\begin{aligned} & \text { 9viydS 77vy } \\ & 19 \text { yヨonnox } \end{aligned}$						$\begin{gathered} \text { •ON } \\ \text { IJחY\&SNOJ } \end{gathered}$
		SAOy						


CONSTRUCTNO. NO.	Bovs				girls			
	fall	GER   SPRING	$\text { fall } \mathrm{CL}$	OLDER	$\text { fall }{ }^{Y C}$	GER SPRING	$\text { fall } \mathrm{CL}$	$\begin{aligned} & \text { ERPING } \\ & \text { SPRI } \end{aligned}$
11	0.59	0.47	0.57	0.48	0.63	0.60	0.67	0.62
$(2)$	0.52	0.38	C.48	0.23	0.57	0.38	0.54	0.32
( 31	0.33	0.19	0.19	0.14	0.44	0.12	0.31	0.21
( 4 )	0.10	0.18	-. 12	-. 02	0.26	0.04	0.16	0.03
( 5)	-. 04	0.16	-.18	0.04	0.02	-. 01	0.09	-. 06
$(6)$	-. 29	-. 13	-. 20	-. 20	-. 31	-. 24	-. 32	-. 26
$(7)$	-.62	-. 45	-. 55	-. 27	-.61	-. 48	-.63	-. 52
( 81	-. 37	-. 20	-. 19	-. 03	-. 46	-. 31	-. 48	-. 18
$(9)$	-. 11	-. 21	-. 02	-. 10	-. 05	-. 15	-. 13	-. 14
(10)	0.44	0.23	0.41	c. 28	0.48	0.36	0.50	0.27
(11)	0.13	0.05	0.22	0.22	0.18	0.11	0.16	-. 13
(13)	0.24	0.14	0.09	0.21	0.19	0.09	0.24	-. 06
(14)	0.12	0.13	0.08	-. 02	0.20	0.11	0.06	-. 01
(15)	-. 02	0.04	-. 12	-. 11	-.c7	-.08	-. 03	-. 10
$(16)$	-. 04	-. 05	0.0	0.06	0.18	-. 03	-. 04	-. 04
$(121)$	0.79*	0.75*	0.80*	0.75*	0.86*	0.78 *	0.83*	U.77*
(17)	0.38	0.16	0.46	0.20	0.35	0.39	c. 37	0.28
(18)	0.35	0.36	0.35	0.26	0.45	0.18	0.41	0.42

CORRELATIONS CF 18 CONSTRUCTS WITH COMPONENT: INFCRMATICN SEEKING-CHILD (12B)

construct	Bars				GIRLS			
	YOUNGER		OLDER		YCUNGER		CLDER	
	FALL	SPR ING	FALL	SPRING	FALL	SPRING	FALL	SPRING
(1)	0.17	0.14	C. 18	0.16	0.36	0.22	0.16	0.34
( 2)	0.12	C. 03	0.18	0.14	0.17	0.18	0.23	0.24
( 3)	0.08	C.C9	0.10	0.12	0.20	0.01	0.19	0.13
(4)	0.07	$0 . \mathrm{Cl}$	0.02	0.09	0.14	0.0	0.11	-. 09
( 5)	0.0	-. 09	0.10	0.15	-. 09	0.0	0.10	-. 12
( 6)	-. 06	-. 04	0.17	-. 14	-. 17	-. 12	-. 20	-. 12
( 7)	-. 14	-. CB	0.0	-. 06	-. 23	-. 16	-. 24	-. 25
$(8)$	-. 07	$0 . C 5$	0.02	-. 04	-. 10	-. 10	-. 12	-. 03
$(9)$	-. 09	C. Cl	-. 23	-. 03	0.10	-. 10	-. 09	0.11
(1c)	0.09	0.18	-. 03	C. 12	C. 32	0.18	0.20	0.20
(11)	0.04	0.10	C. 05	0.20	0.12	-. 01	-. 01	0.03
(13)	C. 19	C. 13	0.13	0.08	0.17	0.12	0.31	0.12
(14)	0.03	0.02	0.05	0.05	0.09	0.05	0.13	0.17
(15)	0.15	C. 05	0.1 C	C. 11	-. $C 3$	0.05	0.109	0.14
(16)	0.03	-. 03	-. 04	0.04	0.03	-. 06	0.05	-. 05
(12)	0.51*	0.41*	0.51*	0.48*	0.66*	c.62*	0.59*	0.47*
(17)	0.01	0.11	-. 01	-.08	0.16	0.02	0.11	0.06
(18)	0.10	0.04	0.11	C. 23	0.32	0.17	0.27	0.01

CORRELATIONS OF 18 CONSTRLCTS WITH COMPONENT: ATTACHMENT-CHILD (12C)

CONSTRUCT NC.	eors				GIRLS			
	YOUNGER		OLOER		YCunger		clder	
	FALL	SPRING	FALL	SPRING	FALL	SPRING	FALL	SPRING
$(1)$	0.20	C. 25	0.29	0.21	0.22	0.25	0.23	0.27
( 21	0.09	0.23	0.19	0.07	0.23	0.24	0.24	0.17
( 3)	-. 14	-. 02	-. 09	-. 03	0.0	-. 14	0.25	0.03
( 4)	-. 07	$-.17$	-. 05	-. 02	-.02	-. 11	0.03	-. 18
$(5)$	0.09	0.07	0.06	0.18	-. 21	0.15	0.13	0.11
$(6)$	0.02	-. 13	0.1 C	0.04	-. 08	0.15	-. 11	0.04
( 7)	-. 05	-. 25	-. 14	C. 02	-. 16	-. 15	-. 30	-. 20
( 8 )	-. 04	C. 10	0.01	0.02	$0 . c$	-. 06	-. 20	-. 10
$(9)$	-. 10	-. 17	-. 20	-. 18	-. 02	-. 18	-. 01	-.17
$(10)$	0.04	0.23	0.11	0.01	0.01	0.07	0.12	0.10
(11)	0.02	0.10	0.13	-. 11	0.16	0.04	-. 07	-210
(13)	c. 06	$\cdots, \mathrm{c} /$	0.09	0.04	0.14	-0.0t	0.133	-.13
(14)	0.06	0.03	-. 03	- 10	$\cdots .01$	0.10	0.22	$-0.5$
(15)	-. 13	-. 15	0.03	$-08$	0.06	-. 07	0.69	- \%
(16)	-. 04	-. 17	0.01	0.10	C.c. 7	-. 13	-. 07	-.01
(12)	0.59*	0.73*	0.64*	0.70 *	$0.56 \%$	c. 72 *	0.70*	0.12\%
(17)	0.34	0.23	0.34	-. 04	0.16	0.25	0.06	0.39
(18)	0.12	0.23	0.34	0.20	0.17	0.13	0.38	0.23

CCRRELATICNS OF 18 CONSTRLCTS WITH COMPONENT: RECCGNITICN SEEKING-CHILD (12R)

CONSTRUCTNC.	ears				GIRLS			
	Younger		OLOER		YCUNGER		CLDER	
	FALL	SPRING	FALL	SPRING	FALL	SPRING	FALL	SPRING
( 1)	0.14	C. 19	0.05	0.16	0.10	0.07	0.12	0.02
( 2)	c. 20	0.20	0.04	0.23	0.09	0.08	0.03	-. 08
$(3)$	0.14	C. 15	0.16	C. 18	0.0 .8	0.07	-. 04	C. 02
$(4)$	0.18	0.19	C. 25	0.20	0.15	0.05	0.08	-. 05
( 5)	0.02	0.12	C. 05	0.15	-. 20	-. 06	-. 04	-. 03
( 6)	-. 01	0.09	-. 03	0. 14	-. 06	-. 05	-. 04	0.04
$(7)$	-. 11	-. 15	-. 09	-. 21	-. 09	-. 07	-. 03	0.03
$(8)$	-. 04	-. 15	0.02	-. 17	$0 . C$	-. 04	-. 10	-. 02
( 9)	-. 08	-. 23	0.02	-. 18	-. 06	-. 02	-. 10	0.12
(10)	0.10	0.01	0.04	0.14	0.17	0.01	0.06	0.05
(11)	0.06	0.04	-. 03	0.06	0.17	0.05	0.04	-. 07
(13)	C. 24	0.12	0.07	0.15	0.15	-. 03	0.08	0.01
(14)	0.02	-. $\mathrm{CL}_{4}$	C. 07	0.03	0.11	-. 13	0.69	-. 06
(15)	0.17	0.16	$-.07$	0.12	0.08	0.01	0.13	0.01
(16)	-. 05	0.10	0.29	-. 10	C. 28	0.09	0.05	0.0
(12)	0.37*	C.26*	0.21*	0.31*	0.26*	0.17*	0.27*	0.24*
(17)	0.01	0.66	$\rightarrow .20$	0.05	-. 12	0.07	0.09	0.19
(18)	0.0	0.03	0,15	0.03	0.12	1	0.07	C. 0

ERIC



[^0]:    ${ }^{*} \mathbf{p}<.001$ (two-tailed) in at least four out of eight subgroups.
    ${ }^{*} \mathrm{p}<.001$ (two-tailed) in at least seven out of eight subgroups.

[^1]:    * $\mathrm{g}<.001$ (two-tailed), in at least four out of eight subgroups. ${ }^{* *} \underline{g}<.001$ (two-tailed), in at least seven out of eight subgroups.

[^2]:    *While suggestive, these comparisons do not constitute a demonstration of isomorphism between the structures found in the two studies.

